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Abstract

Higher category theory is the generalization of category theory to a context where there are not
only morphisms between objects, but generally k-morphisms between pk ´ 1q-morphisms, for all
k P N. The theory of higher categories or p8,1q-categories, as it is sometimes called, however, can
be very intractable at times. That is why there are now several models which allow us to understand
what a higher category should be. Among these models is the theory of quasi-categories, introduced
by Bordman and Vogt, and much studied by Joyal and Lurie. There are also other very prominent
models such as simplicial categories (Dwyer and Kan), relative categories (Dwyer and Kan), and
Segal categories (Hirschowitz and Simpson). One of those models, complete Segal spaces, was
introduced by Charles Rezk in his seminal paper “A model for the homotopy theory of homotopy
theory”. Later they were shown to be a model for p8,1q-categories.

Higher bordism categories. One major application of higher category theory and one of the
driving forces in developing it has been extended topological quantum field theory. This has
recently led to what may become one of the central theorems of higher category theory, the
proof of the cobordism hypothesis, conjectured by Baez and Dolan. Lurie suggested passing to
p8,nq-categories for a proof of the Cobordism Hypothesis in arbitrary dimension n. However,
finding an explicit model for such a higher category poses one of the difficulties in rigorously
defining these n-dimensional TFTs, which are called ”fully extended”. Our focus will be on the
p8,dq-category Bordpn´dq

n , a variant of the fully extended Bordn. Our goal is to sketch a detailed
construction of the p8,dq-category of n-bordisms as a d-fold complete Segal space, motivated by
the proof due to Damien Calaque and Claudia Scheimbauer [CS19].
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Outline of the thesis

Topological field theories (TFTs) arose as toy models for physical quantum field theories and have
proven to be of mathematical interest, notably because they are a fruitful tool for studying topology.
An n-dimensional TFT is a symmetric monoidal functor from the category of bordisms, which has
closed pn ´ 1q-dimensional manifolds as objects and n-dimensional bordisms as morphisms, to any
other symmetric monoidal category, which classically is taken to be the category of vector spaces or
chain complexes.

A classification of 1- and 2-dimensional TFTs follows from classification theorems for 1- and
2-dimensional compact manifolds with boundary, cf. [Abr96]. In order to obtain a classification
result for larger values of n one needs a suitable replacement of the classification of compact
n-manifolds with boundary used in the low-dimensional cases. Moreover, as explained in [BD95],
this approach requires passing to “extended” topological field theories. Here extended means that
we need to be able to evaluate the n-TFT not only at n- and pn ´ 1q-dimensional manifolds, but also
at pn ´ 2q-,..., 1-, and 0-dimensional manifolds. Thus, an extended n-TFT is a symmetric monoidal
functor out of a higher category of bordisms. In light of the hope of computability of the invariants
determined by an n-TFT, e.g. by a triangulation, it is natural to include this data. Furthermore,
Baez and Dolan conjectured that, analogously to the 1-dimensional case, extended n-TFTs are
fully determined by their value at a point, calling this the Cobordism Hypothesis. A definition of
a suitable bicategory of n-bordisms and a proof of a classification theorem of extended TFTs for
dimension 2 was given in [SP09].

In his expository manuscript [Lur09c], Lurie suggested passing to p8,nq-categories for a proof
of the Cobordism Hypothesis in arbitrary dimension n. He gave a detailed sketch of such a proof
using a suitable higher category of bordisms, which, informally speaking, has zero-dimensional
manifolds as objects, bordisms between objects as 1-morphisms, bordisms between bordisms as
2-morphisms, etc., and for k ą n there are only invertible k-morphisms given by diffeomorphisms
and their isotopies. However, finding an explicit model for such a higher category poses one of the
difficulties in rigorously defining these n-dimensional TFTs, which are called “fully extended”.

In [Lur09c], Lurie gave a short sketch of a definition of this p8,nq-category using complete n-fold
Segal spaces as a model. Instead of using manifolds with corners and gluing them, his approach
was to conversely use embedded closed (not necessarily compact) manifolds, following along the
lines of [GTMW09, Gal11, BM14], and to specify points where they are cut into bordisms of
which the embedded manifold is a composition. Whitney’s embedding theorem ensures that every
n-dimensional manifold M can be embedded into some large enough vector space and suitable
versions for manifolds with boundary can be adapted to obtain an embedding theorem for bordisms.
Moreover, the rough idea behind the definition of the n-fold Segal space is that it includes the
data, for k1, . . . ,kn, of the levels of PBordn is that the pk1, . . . ,knq-level of our n-fold Segal space
PBordn should be a classifying space for diffeomorphisms of, in the ith direction ki-fold, composable
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n-bordisms. Lurie’s idea was to use the fact that the space of embeddings of M into R8 is contractible
to justify the construction.

Modifying this approach, the main goal of this report is to provide a detailed construction of
p8,dq-category of n-bordisms, a variant of p8,nq-category of n-bordisms Bordn suitable for
explicitly constructing an example of a fully extended nTFT, which will be the content of a
subsequent paper [Sch14].

Organization of the thesis

In Chapter 1, consisting of the first three sections, we recall the necessary tools from higher
category theory needed to construct higher categories of bordisms.

Section 1.1 reviews the theory of simplicial sets and simplicial spaces, forming the basic objects of
higher category theory. Section 1.2 reviews a model for p8,1q-categories given by complete Segal
spaces. In Section 1.3 we explain the model for p8,nq-categories given by complete n-fold Segal
spaces and introduce a model which is a hybrid between complete n-fold Segal spaces and Segal
n-categories.

Chapter 2 is devoted to the construction of Bordn.

Our construction of the p8,dq-category Bordpn´dq
n of higher bordisms is based on a simpler complete

Segal space Int of closed intervals, which we introduce in Section 2.1. The closed intervals
correspond to places where we are allowed to cut the manifold into the bordisms it composes. The
fact that we prescribe closed intervals instead of just a point corresponds to fixing collars of the
bordisms.

Section 2.2 is the central part of this thesis and consists of the construction of the complete d-fold
Segal space Bordpn´dq

n of n-bordisms, a variant of the n-fold Segal space Bordn of n-bordisms.

3
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Section 1.1. A quick tour of simplicial spaces 5

Section 1.1
A quick tour of simplicial spaces

In this section we take a quick look at categories and topological spaces to see how both of
them can be thought of as special cases of simplicial sets. This is an informal review of these
subjects, especially motivated by the Rasekh’s exposition [Ras18] and serves as a motivation for our
definition of a higher category, rather than a thorough introductory text. The section culminates in a
introduction to simplicial spaces, which combines category theory and homotopy theory.

1.1.1 Review of Category Theory

The philosophy of categories is not to just focus on objects but also consider how they are related to
each other. This leads to following definition of a category.

Definition 1.1.1. A category C is a set of objects O and a set of morphisms M along with following
functions:

(1) An identity map id : O Ñ M .

(2) A source-target map ps, tq : M Ñ O ˆO .

(3) A composition map m : M s ˆt
O M Ñ M .

These functions have to make the following diagrams commute:

(1) Source-Target Preservation:

M M ˆ
O

M M

O M O

s

π2

π1

m t

t
s

(2) Identity Relations:

O M

O ˆO

id

pidO ,idOq
ps,tq

5



Section 1.1. A quick tour of simplicial spaces 6

(3) Identity Composition:

O ˆM M ˆM M ˆO

M

π2

idˆidM

m

idM ˆid

π1

(4) Associativity:

M ˆ
O

M ˆ
O

M M ˆ
O

M

M ˆ
O

M M

mˆidM

idM ˆm

m

m

There are many examples of categories in the world of mathematics.

Example 1.1.2. Let Set be the category which has as objects all sets and as morphisms all functions
of sets. Then the function id assigns to each set the identity function and the source target maps ps, tq
assigns to each function it’s source and target. Finally m is just the usual composition of functions.

Example 1.1.3. We can repeat the same example as above by replacing sets with a set that has
additional structure. So, we can define the category T op of topological spaces and continuous maps,
or groups and homomorphisms.

Remark 1.1.4. Very often we care about the morphisms between two specific objects. Concretely,
for two objects c,d P C “ pO,M q we want to define the set of maps with source c and target d and
denote it as HomC pc,dq, which we define as the following pullback

HomC pc,dq “ ˚c ˆ
O

s M t ˆ
O

d ˚

Using the philosophy of categories on categories themselves means we should consider studying
maps between categories.

Definition 1.1.5. A functor F : C Ñ D is a tuple of two maps. One map for objects FO : OC Ñ OD

and one map for morphisms FM : MC Ñ MD , such that they satisfy following conditions:

(1) Respecting Identity: idDFO “ FM idC .

(2) Respecting Source/Target: sDFM “ FOsC and tDFM “ FOtC .

6



Section 1.1. A quick tour of simplicial spaces 7

(3) Respecting Composition: FM mC “ mDpFM ˆ FM q.

Example 1.1.6. The definition above allows us to define the category C at which has objects
categories and morphisms functors.

Repeating the philosophy of categories for functors leads us to the definition of a natural transformation.

Definition 1.1.7. Let F,G : C Ñ D be two functors. A natural transformation α : F ñ G is a
collection of maps

αc : Fpcq Ñ Gpcq

for every object c P C such that for every map f : c Ñ d the diagram

Fpcq Fpdq

Gpcq Gpdq

Fp f q

αc αd

Gp f q

commutes.

Using natural transformations we can even build more categories.

Theorem 1.1.8. Let C and D be two categories. The collection of functors from C to D , denoted
by FunpC ,Dq is a category with objects functors and morphisms natural transformations.

Notation 1.1.9. For two functors F,G : C Ñ D , we denote the hom set in this category as NatpF,Gq.

This finally leads to the famous Yoneda lemma, which is one of the most powerful results in category
theory.

Definition 1.1.10. Let c P C be an object. There is a functor Yc : C Ñ Set that send each object d
to the set HomC pc,dq. Functoriality follows from composition.

Lemma 1.1.11. Let F : C Ñ Set be a functor. For each object c P C , there is a bijection of sets

NatpYc,Fq – Fpcq

induced by the map that sends each natural transformation α to the value at the identity αcpidcq.

The definitions given up to here are quite cumbersome and necessitate the reader to keep track of
a lot of different information. It would be helpful if we could package that same information and
present it in a more elegant manner. The way we can achieve this goal is by using simplicial sets.

7



Section 1.1. A quick tour of simplicial spaces 8

1.1.2 Simplicial Sets: A Second Look at Categories

Simplicial sets are a very powerful tool that can help us study categories.

Definition 1.1.12. Let ∆ be the category with objects all non-empty finite linearly ordered sets

r0s “ t0u, r1s “ t0 ď 1u, r2s “ t0 ď 1 ď 2u, ...

and morphisms order-preserving maps of linearly ordered sets.

Notation 1.1.13. There are some specific morphisms in the category ∆ that we will need later on.

• For each n ě 0 and 0 ď i ď n ` 1 there is a unique injective map

di : rns Ñ rn ` 1s

such that i P rn ` 1s is not in the image. More explicitly dipkq “ k if k ă i and dipkq “ k ` 1 if
k ě i.

• For each n ě 1 and 0 ď i ď n there is a unique surjective map

si : rns Ñ rn ´ 1s

defined as follows. sipkq “ k if k ď i and sipkq “ k ´ 1 if k ą i. Notice in particular that
sipiq “ sipi ` 1q “ i and that si is injective for all other values.

We have following amazing fact regarding these two classes of maps.

Remark 1.1.14. Every morphisms in ∆ can be written as a finite composition of these two classes of
maps stated above. The maps satisfy certain relations that can be found in [GJ09, Page 4].

Notation 1.1.15. Because of this remark we can depict the category ∆ as the following

r0s r1s r2s ¨ ¨ ¨
d0

d1
s0

d0

d2

Having studied ∆ we can finally define a simplicial set.

Definition 1.1.16. A simplicial set is a functor X : ∆ op Ñ Set.

Remark 1.1.17. Recall that ∆ op is the opposite category of ∆ . It has the same objects but every
morphism has reverse source and targets.

Remark 1.1.18. Concretely a simplicial set is a choice of sets X0,X1,X2, ... which have the appropriate
functions between them. Using the diagram above, we can depict a simplicial set as:

8



Section 1.1. A quick tour of simplicial spaces 9

X0 X1 X2 ¨ ¨ ¨
d1

d0

d2

d0

notice that all arrows are reversed because this functor is mapping out of the opposite category of ∆ .

Definition 1.1.19. A simplicial set is a functor and so the collection of simplicial sets is itself a
category with morphisms being natural transformations. We will denote this category by sSet.

A simplicial set is an amazing object of study. In the coming two sections we will see how, depending
on which aspects we focus on, a simplicial set can have a very interesting and diverse behavior. For
now we focus on the categorical aspects of simplicial sets.

First we show how we can build a simplicial set out of a category.

Construction 1.1.20. Let C “ pO,M q be a category. Then we define NC as the following
simplicial set. First we define it level-wise as

NC0 “ O

NCn “ M ˆ
O
...ˆ

O
M

where there are n factors of M and n ě 1. So, the 0 level is the set of objects and at level n we have
the set of n composable morphisms.

Now we construct the maps between them. It suffices to specify the maps si and di. If n “ 0, then
s0 : NC0 Ñ NC1 is defined as s0 “ idC . Moreover, d0,d1 : NC1 Ñ NC0 are defined as d0 “ s,d1 “ t.

Let n ě 1 and let p f1, f2, ..., fnq P NCn be an element. For 0 ď i ď n`1, we define di : NCn Ñ NCn´1
for the following 3 cases:

(i=0) dipp f1, f2, ..., fnqq “ p f2, f3, ..., fnq

p1 ď i ď nq dipp f1, f2, ..., fi´1, fi, ..., fnqq “ p f1, f2, ..., fi´1 fi, ..., fnq

(i=n+1) dipp f1, f2, ..., fnqq “ p f1, f2, ..., fn´1q

Similarly, for 0 ď i ď n we define si : Cn Ñ Cn`1 for the following two cases:

p0 ď i ď nq sipp f1, f2, ..., fi, ..., fnqq “ p f1, f2, ..., idsp fiq, fi, ..., fnq

(i=n+1) sipp f1, f2, ..., fi, ..., fnqq “ p f1, f2, ..., fi, ..., fn, idtp fnqq

It is an exercise in diagram chasing to show that NC satisfies the relations of a simplicial set with
the di and si defined above.

9



Section 1.1. A quick tour of simplicial spaces 10

Remark 1.1.21. Notice in order to define NC it did not suffice to have a two sets with 3 maps
between them. We needed the existence of the composition map to be able to make the definition
work.

This construction merits a new definition.

Definition 1.1.22. Let C be a category. The nerve of C is the simplicial set NC described above.

The nerve construction fits well into our philosophy of category theory.

Theorem 1.1.23. The nerve construction is functorial. Thus we get a functor

N : Cat Ñ sSet

Proof. We already constructed the map on objects. For a functor F : C Ñ D , the simplicial map
NF : NC Ñ ND can be defined level-wise as

• NF0 “ FO

• NFn “ FM ˆ
FO

...ˆ
FO

FM .

From here on it is a diagram chasing exercise to see that NFn make all the necessary squares
commute.

Note that it clearly follows that if IC : C Ñ C is the identity functor, then NIC is the identity map.
Moreover, NpF ˝ Gq “ NF ˝ NG.

Example 1.1.24. We have already introduced the linearly ordered set rns before (Definition 1.1.12).
We can think of rns as a category, where the objects are the elements and a morphism are ordered
2-tuples pi, jq, where i ď j. The source of such map pi, jq is i and the target is j. The identity map
of an element i is the tuple pi, iq. Finally, we can compose two morphisms pi, jq and p j,kq to the
morphism pi,kq. This gives us a category, which we will still denote by rns. Notice in this case
for each chosen objects i, j there either is a unique morphism from i to j (if i ď j) or there is no
morphism at all.

There is a more direct way to think about the set of morphisms. The ordered set r1s has two
ordered elements 0 ď 1. Given that a morphism is a choice of two ordered elements, we can
think of a morphism as an order preserving map r1s Ñ rns. But that is exactly a morphism in
the category ∆ . Thus the set of morphisms also corresponds to Hom∆ pr1s, rnsq. Let us compute
Nprnsq. By definition Nprnsq0 “ rns. Moreover, Nprnsq1 “ Hom∆ pr1s, rnsq. Next notice that
Nprnsqm “ Nprnsq1 ˆNprnsq0 ...ˆNprnsq0 Nprnsq1, which corresponds to a choice of m ordered numbers
pi1, i2, ..., imq. Using the same argument as the last paragraph, we see that Nprnsqm “ Hom∆ prms, rnsq.
Thus, Nprnsq is really just the representable functor

Nprnsq “ Hom∆ p´, rnsq : ∆
op Ñ Set

10



Section 1.1. A quick tour of simplicial spaces 11

.

This simplicial set is really special and thus deserves its own name.

Definition 1.1.25. For each n there is a representable functor, which maps ris to Hom∆ pris, rnsq.
We will denote this simplicial set by ∆ rns. By the Yoneda lemma, for any simplicial set X we have
following isomorphism of sets:

HomsSetp∆ rls,Xq – Xn.

By now we have shown that we can take a category and build a simplicial set out of it. But can we
build every simplicial set this way? If not then which ones do we get?

Definition 1.1.26. A simplicial set X satisfies the Segal condition if the map

Xn
–

ÝÝÝÑ X1 ˆ
X0

...ˆ
X0

X1

is a bijection for n ě 2.

The nerve NC satisfies the Segal condition by its very definition. Thus not every simplicial set is
equivalent to the nerve of a category. But what condition other than the Segal condition do we need?

Theorem 1.1.27. Let X be a simplicial set that satisfies the Segal condition. Then there exists a
category C such that X is equivalent to NC .

Proof. We define the category C as follows. It has objects OC “ X0 and morphisms MC “ X1.
Then the source, target and identity maps are defined as sC “ d1 : X1 Ñ X0, tC “ d0 : X1 Ñ X0,
idC “ s0 : X0 Ñ X1 and the product map is defined as mC “ d1 : X2 Ñ X1. Here we are using the fact
that X2 – X1 ˆX0 X1. Thus we can think of m as a map m : MC ˆOC MC Ñ MC , which is exactly
what we wanted. The simplicial relations show that C satisfies the conditions stated in Definition
1.1.1.

Finally, we have the following bijection.

pNC qn “ MC ˆ
OC

... ˆ
OC

MC “ X1 ˆ
X0

...ˆ
X0

X1 – Xn

This shows that NC is equivalent to X and finished the proof.

The upshot is that a simplicial set that satisfies the Segal condition has the same data as a category
and so instead of keeping track of all the necessary data and maps between them it packages
everything very nicely and it gives us much better control. This doesn’t just hold for the categories
themselves, but also carries over to functors.

11



Section 1.1. A quick tour of simplicial spaces 12

Theorem 1.1.28. Let C and D be two categories. Then the functor N induces a bijection of hom
sets

N : HomCatpC ,Dq Ñ HomsSetpNC ,NDq

Proof. We prove the result by showing the map above has an inverse. Let f : NC Ñ ND be a
simplicial map. Then we define Pp f q as the functor that is defined on objects as f0 and defined on
morphisms as f1. The simplicial identities then show that it satisfies the conditions of a functors.
Finally, for any functor F : C Ñ D , the composition PNpFq “ F by definition. On the other hand for
any simplicial map f : NC Ñ ND , NPp f q “ f as they agree at level 0 and 1 and that characterizes
the map completely.

Up until now we have shown how we can use the data of a simplicial set to study categories and
recover category theory. The next goal is to show we can use the same ideas to study homotopy
theory.

1.1.3 Homotopy Theory of Topological Spaces

Recall the classical definition of homotopies of topological spaces.

Definition 1.1.29. Two maps of topological spaces f ,g : X Ñ Y are called homotopic if there exists
a map H : X ˆ r0,1s Ñ Y such that H|Xˆt0u “ f and H|Xˆt1u “ g.

Definition 1.1.30. A map f : X Ñ Y is called a homotopy equivalence if there exists a map g : Y Ñ X
such that both f g and g f are homotopic to the identity map.

A key question in the homotopy theory of spaces is to determine whether a map is an equivalence
or not. However topological spaces can be quite pathological and so we often look for suitable
”replacements” i.e. equivalent spaces which have a simpler structure. One good example is a
CW-complex.

Theorem 1.1.31. For each topological space X there exists a CW-complex X̃ and map X̃ Ñ X that
is a homotopy equivalence.

Thus from a homotopical perspective it often suffices to study CW-complexes rather than all spaces.
However, a CW-complex is built out of simplices. Thus what we really care about is how many
simplices we have and how they are attached to each other. This suggests that we can study spaces
from the perspective of simplicial sets.

12



Section 1.1. A quick tour of simplicial spaces 13

1.1.4 Simplicial Sets: A Second Look at Spaces

Here we show how we can use simplicial sets to study the homotopy theory of topological spaces.
We have already defined simplicial sets in the previous section. So, first we show how to construct a
simplicial set out of any topological space.

Definition 1.1.32. Let Splq be the standard l ` 1-simplex. Concretely Splq is the convex hull of the
l ` 1 points p1,0, ...,0q,p0,1, ...,0q, ...,p0,0, ...,1q in Rl`1. In particular, Sp0q is a point, Sp1q is an
interval and Sp2q is a triangle.

Remark 1.1.33. One important fact about those simplices is that the boundary is built out of lower
dimensional simplices. For example, the boundary of a line is the union of two points or the
boundary of a triangle is the union of three lines. This means we have two maps d0,d1 : Sp0q Ñ Sp1q

that map to the two boundary points or we have three maps d0,d1,d2 : Sp1q Ñ Sp2q.

On the other side, we can always collapse one boundary component to lower the dimension of our
simplex. Thus there are two ways to collapse our triangle Sp2q to a line Sp1q, which gives us two
maps s0,s1 : Sp2q Ñ Sp1q. It turns out these maps do satisfy the covariant version of the simplicial
identities, which are also called the cosimplicial identities. This means we can thus define a functor

S : ∆ Ñ Top

This functor can be depicted in the following diagram.

Sp0q Sp1q Sp2q ¨ ¨ ¨
d0

d1
s0

d0

d2

Definition 1.1.34. Let X be a topological space. We define the simplicial set SpXq as follows.
Level-wise we define SpXq as

SpXqn “ HomToppSpnq,Xq.

The functoriality of I as described in the remark above shows that this indeed gives us a simplicial
set.

Thus we can build a simplicial set out of every topological space. Each level indicates how many
n ` 1-simplices can be mapped into our space. However, we cannot build every kind of simplicial
set this way. Rather the simplicial set we constructed is called a Kan complex. In order to be able to
give a definition we need to gain a better understanding of simplicial sets first.

Definition 1.1.35. A simplicial set T is a subsimplicial set of S, if for any l we have Tl Ă Sl , and for
every morphism α : rks Ñ rls, the associated map Spαq : Sl Ñ Sk carries Tl into Tk. In particular, T
inherits the same face (d1

isq and degeneracy (s1
jsq maps.

Example 1.1.36. There are two important classes of sub simplicial sets of ∆ rls (Definition 1.1.25):

13



Section 1.1. A quick tour of simplicial spaces 14

1. The first one is denoted by B∆ rls and defined as follows: B∆ rlsi is the subset of all non-surjective
maps in Hom∆ pris, rlsq. In particular, this implies that for i ă n, we have B∆ rlsi “ ∆ rlsi and
for i “ l we have B∆ rlsl “ ∆ rlsl ´ tidrlsu. Intuitively it looks like the boundary of our convex
space i.e. ∆ rls with the center n-dimensional cell removed.

2. The second is denoted by Λ rlsi (0 ď i ď l) and consists of non-surjective maps that satisfy
the following condition: pΛ rnsiq j is the subset of all maps in Hom∆ pr js, rlsq, that satisfy
following condition. If i is not in the image of the map then at least one other elements also
has to be not in the image. Concretely, this means it is also a subspace of B∆ rls and it excludes
the face which is formed by all vertices except for i. Intuitively, this one looks like a boundary
where one of the faces (the one opposing the vertex i) has been removed as well. Given the
resulting shape it is very often called a ”horn”.

Having gone through these definitions we can finally define a Kan complex.

Definition 1.1.37. A simplicial set K is called a Kan complex if for any l ě 0 and 0 ď i ď l, the map

HomSp∆ rls,Kq Ñ HomSpΛ rlsi,Kq

is surjective.

Remark 1.1.38. Basically the definition is saying that following diagram lifts:

Λ rlsi K

∆ rls

Example 1.1.39. For every topological space X , the simplicial set SX is a Kan complex. We will
not prove this fact here. It relies on the idea that a topological space has no sense of direction. Thus
every path can be inverted. Concretely, for any map γ : Ip1q Ñ X , there is a map γ´1 : Ip1q Ñ X that
is defined as γ´1ptq “ γp1 ´ tq. Thus every element γ P SpXq1 has a reverse path. A similar concept
applies to higher dimensional maps.

It is that idea that allows us to lift any map of the form above. For a rigorous argument see [GJ09,
Chapter 1].

Example 1.1.40. Contrary to the example above ∆ rls is not a Kan complex (if l ą 0). For example
the map Λ r2s0 Ñ ∆ rls that sends 0 to 0, 1 to 2 and 2 to 1 cannot be lifted.

The definition above is a special case of a Kan fibration.

Definition 1.1.41. A map of simplicial sets f : S ↠ T is a Kan fibration if any commutative square
of the form

14



Section 1.1. A quick tour of simplicial spaces 15

Λ rlsi S

∆ rls T

lifts, where n ě 0 and 0 ď i ď n.

Remark 1.1.42. This generalizes Kan complexes as K is a Kan complex if and only if the map
K Ñ ∆ r0s is a Kan fibration. As a result, if K ↠ L is a Kan fibration and L is Kan fibrant, then K is
also Kan fibrant

Kan complexes share many characteristics with topological spaces. In particular, we can talk about
equivalences and homotopies.

Definition 1.1.43. Two maps f ,g : L Ñ K between Kan complexes are called homotopic if there
exists a map H : L ˆ ∆ r1s Ñ K such that H|0 “ f and H|1 “ g.

Remark 1.1.44. This definition can be made for any simplicial set, but it is only a equivalence
relation for the case of Kan complex.

Example 1.1.45. One particular instance of this definition is when L “ ∆ r0s. In this case we
have two points x,y : ∆ r0s Ñ K. We say x and y are homotopic or equivalent if there is a map
γ : ∆ r1s Ñ K such that γp0q “ x and γp1q “ y.

Definition 1.1.46. A map f : L Ñ K between Kan complexes is called an equivalence if there are
maps g,h : K Ñ L such that f g : K Ñ K is homotopic to idK and h f : L Ñ L is homotopic to idL.

Most importantly, in order to study equivalences of spaces it suffices to study equivalences of the
analogous Kan complexes.

Lemma 1.1.47. A map of topological spaces f : X Ñ Y is a homotopy equivalence if and only if the
map of Kan complexes S f : SX Ñ SY is a homotopy equivalence.

Seeing how that result holds requires us to use much more machinery. One very efficient way is to
use the language of model categories. A model structure can capture the homotopical data in the
context of a category. Using model categories we can show that topological spaces and simplicial
sets (if we focus on Kan complexes) have equivalent model structures. For a better understanding of
model structures see [Hir03].

Remark 1.1.48. Kan fibrations are important in the homotopy theory of simplicial sets. That is
because base change along Kan fibrations is equivalence preserving. By that we mean that in the
following pullback diagram

15



Section 1.1. A quick tour of simplicial spaces 16

K ˆ
M

L K

L M

x

»

g˚ f

g

»

f

if f is an equivalence and g is a Kan fibration then g˚ f is also an equivalence. Moreover, the
pullback of a Kan fibration is also a Kan fibration. Thus we say such a pullback diagram is homotopy
invariant.

Remark 1.1.49. The homotopy invariance of base change by a Kan fibration implies in particular
that we can define a homotopy pullback. We say a diagram of Kan complexes

A B

C D

x

g

f

is a homotopy pullback if the induced map A Ñ B ˆD C is a homotopy equivalence. In other words,
we demand a pullback “up to homotopy” rather than a strict pullback. The fact that g is a Kan
fibration implies that this definition is well-defined.

Before we move on we will focus on one particular, yet very important instance of a homotopy
equivalence.

Definition 1.1.50. A Kan complex K is contractible if the map K Ñ ∆ r0s is a homotopy equivalence.

Remark 1.1.51. The notion of a contractible Kan complex is central in homotopy theory. It is
the homotopical analogue of uniqueness as it implies that every two points in K are equivalent.
Moreover, any two paths are themselves equivalent in the suitable sense and this pattern continues.

A contractible Kan complex is again a special kind of Kan fibration.

Definition 1.1.52. We say a map K Ñ L is a trivial Kan fibration if it is a Kan fibration and a weak
equivalence.

Lemma 1.1.53. A map K Ñ L is a trivial Kan fibration if and only if it is a Kan fibration and for
every map ∆ r0s Ñ L, the fiber ∆ r0s ˆL K is contractible.

Remark 1.1.54. Thus a trivial Kan fibration not only has lifts, but the space of lifts is contractible,
meaning there is really only one choice of lift up to homotopy.

16



Section 1.1. A quick tour of simplicial spaces 17

Having a homotopical notion of an isomorphism, namely an equivalence, we can also define the
homotopical version of an injection, namely a (´1)-truncated map.

Definition 1.1.55. A Kan fibration K Ñ L is (´1)-truncated if for every map ∆ r0s Ñ L, the fiber
∆ r0s ˆL K is either contractible or empty.

Before we move on there is one last property of Kan complexes that we need, namely that they are
Cartesian closed.

Remark 1.1.56. The category of simplicial sets is Cartesian closed. For every two simplicial sets
X ,Y there is a mapping simplicial set, MappX ,Y q defined level-wise as

MappX ,Y qn “ HompX ˆ ∆ rns,Y q.

Proposition 1.1.57. If K is a Kan complex, then for every simplicial set X, the simplicial set
MappX ,Kq is also a Kan complex.

Notation 1.1.58. As we have established a well functioning homotopy theory with Kan complexes,
we will henceforth exclusively use the word space to be a Kan complex.

1.1.5 Two Paths Coming Together

Until now we showed that we can think of categories as a simplicial set that satisfies the Segal
condition and a topological space as a Kan complex. Thus simplicial sets have two different aspects
to them.

We can either think of simplicial sets that have a notion of direction and allow us to do category
theory. When we think of simplicial sets this way we denote them by sSet and pictorially we can
depict them as:

C0 C1 C2 ¨ ¨ ¨
id

s

t

m

On the other side, we can think of simplicial sets that have homotopical properties. In this case we
call them spaces and denote that very same category as S. This time we depict it as:

17



Section 1.1. A quick tour of simplicial spaces 18

K0

K1

K2

...

s0

d0 d1

d0 d2

A higher category should generalize categories and spaces at the same time. Thus our goal is it to
embed both versions of simplicial sets (categorical and homotopical) into a larger setting. We need
to start with a category which can house two versions of simplicial sets in itself independent of each
other so that we can give each the properties we desire and make sure one part has a categorical
behavior and one part has a homotopical behavior. This point of view leads us to the study of
simplicial spaces.

1.1.6 Simplicial Spaces

In this section we define and study objects that have enough room to fit two versions of simplicial sets
inside of it. We will call this object a simplicial space, although they are also known as bisimplicial
sets. The next subsection will justify why we have decided to use the term simplicial space.

Definition 1.1.59. We define the category of simplicial spaces as Funp∆ op,Sq and denote it by sS.

Remark 1.1.60. We have the adjunction

Funp∆
op ˆ ∆

op,Setq – Funp∆
op,Funp∆

op,Setqq “ Funp∆
op,Sq.

Thus on a categorical level a simplicial space is a bisimplicial set. Therefore, we can depict it at the
same time as a bisimplicial set or as a simplicial space. We an depict those two as follows:

18



Section 1.1. A quick tour of simplicial spaces 19

X00 X10 X20 ¨ ¨ ¨

X01 X11 X21 ¨ ¨ ¨

X02 X12 X22 ¨ ¨ ¨

...
...

...
. . .

X0‚ X1‚ X2‚ ¨ ¨ ¨

Notice that X0‚,X1‚, ... are themselves simplicial sets.

Remark 1.1.61. There are two ways to embed simplicial sets into simplicial spaces.

1. There is a functor
iF : ∆ ˆ ∆ Ñ ∆

that send prns, rmsq to rns. This induces a functor

i˚F : sSet Ñ sS

that takes a simplicial set S to the simplicial space i˚FpSq defined as follows.

i˚FpSqkl “ Sk

We call this embedding the vertical embedding.

2. There is a functor
i∆ : ∆ ˆ ∆ Ñ ∆

that send prns, rmsq to rms. This induces a functor

i˚∆ : sSet Ñ sS

that takes a simplicial set S to the simplicial space i˚
∆

pSq defined as follows.

iFpSqkl “ Sl

We call this embedding the horizontal embedding.

19



Section 1.1. A quick tour of simplicial spaces 20

Given that there are two embeddings there are two ways to embed generators.

Definition 1.1.62. We define Fpnq “ i˚Fp∆ rnsq and ∆ rls “ i˚
∆

p∆ rlsq. Similarly, we define BFpnq “

i˚FpB∆ rnsq and Lpnqi “ i˚FpΛ rnsiq.

The category of simplicial spaces has many pleasant features that we will need later on.

Definition 1.1.63. The category of simplicial spaces is Cartesian closed. For any two objects X and
Y we define the simplicial space Y X as

pY X qnl “ HomsSpFpnq ˆ ∆ rls ˆ X ,Y q

Remark 1.1.64. In particular, the previous statement implies that sS is enriched over simplicial sets,
as for every X and Y , we have a mapping space MapsSpX ,Y q “ pY X q0.

Remark 1.1.65. Using the enrichment, by the Yoneda lemma, for any simplicial space X we have
following isomorphism of simplicial sets:

MapsSpFpnq,Xq – Xn.

20



Section 1.2. Complete Segal spaces 21

Section 1.2
Complete Segal spaces

We start with n “ 1. An p8,1q-category should be a 1-category up to coherent homotopy which is
encoded in the invertible higher morphisms. In this section, we will discuss one particular model for
p8,1q-categories. A good overview on different models for p8,1q-categories and their comparison
can be found in [Ber10]. It should be mentioned that by [To5] up to equivalence, there is essentially
only one theory of p8,1q-categories; explicit equivalences between the models mentioned here
have been proved e.g. in [DKS89, Ber07, BK12, Hor15]. One additional model which should be
mentioned is that of Joyal’s quasi-categories. It has been intensively studied, most prominently in
[Lur09a].

1.2.1 The homotopy hypothesis and p8,0q-categories

The basic hypothesis upon which 8-category theory is based goes back to Grothendieck [Gro21]
and is the following:

Hypothesis 1.2.1 (Homotopy hypothesis). Spaces are models for 8-groupoids, also referred to as
p8,0q-categories.

Given a space X , its points, i.e. 0-simplices, are thought of as objects of the p8,0q-category, paths
between points as 1-morphisms, homotopies between paths as 2-morphisms, homotopies between
homotopies as 3-morphisms, and so forth. With this interpretation, it is clear that all n-morphisms
are invertible up to homotopies, which are higher morphisms.

We take this hypothesis as the basic definition, and model “spaces” with simplicial sets rather than
with topological spaces.

Definition 1.2.2. An p8,0q-category, or 8-groupoid, is a space. According to our conventions, it
is a fibrant simplicial set, i.e. a Kan complex.

1.2.2 Topologically and simplicially enriched categories

Two particularly simple, but quite rigid models are topologically or simplicially enriched categories.

Definition 1.2.3. A topological category is a category enriched in topological spaces. A simplicial
category is a category enriched in simplicial sets.

Topological and simplicial categories are discussed and used in [Lur09a, TV05]. These models
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Section 1.2. Complete Segal spaces 22

of p8,1q-categories are perhaps the easiest to visualize and are a great psychological aid but are
rigid to work with in practice because, among other problems, enriched functors do not furnish all
homotopy classes of functors between the p8,1q-categories being modeled, unless the domain and
codomain satisfy appropriate conditions[a]. And even when those conditions are met, the category
of enriched functors might not correctly model the p8,1q-functor category, essentially because
enriched functors correspond to functors that preserve composition strictly while p8,1q-functors
are allowed to preserve it only up to coherent homotopy. For our applications, we would also like to
allow some flexibility for objects, not only morphisms, thus also requiring spaces of objects.

1.2.3 Segal spaces

Complete Segal spaces, first introduced by Rezk in [Rez01] as a model for p8,1q-categories, turn
out to be very well-suited for geometric applications. We recall the definition in this section.

Definition 1.2.4. A (1-fold) Segal space is a simplicial space X “ X‚ which satisfies the Segal
condition: for any n,m ě 0 the commuting square

Xm`n //

��

Xm

��
Xn // X0

induced by the maps rms Ñ rm ` ns, p0 ă ¨¨ ¨ ă mq ÞÑ p0 ă ¨¨ ¨ ă mq, and rns Ñ rm ` ns, p0 ă ¨¨ ¨ ă

nq ÞÑ pm ă ¨¨ ¨ ă m ` nq, is a homotopy pullback square. In other words, the induced map

Xm`n ÝÑ Xm
h
ˆ
X0

Xn

is a weak equivalence.

Defining a map of Segal spaces to be a map of the underlying simplicial spaces gives a category of
Segal spaces SeSp “ SeSp1.

Remark 1.2.5. For any m ě 1, consider the maps gβ : r1s Ñ rms, p0 ă 1q ÞÑ pβ ´ 1 ă β q for
1 ď β ď m. Note that requiring the Segal condition is equivalent to requiring the condition that the
maps

Xm ÝÑ X1
h
ˆ
X0

¨ ¨ ¨
h
ˆ
X0

X1

induced by g1, . . . ,gm are weak equivalences.
[a]Namely, that the domain be cofibrant and the codomain be fibrant in appropriate model structures.
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Section 1.2. Complete Segal spaces 23

Remark 1.2.6. Following [Lur09c] we omit the Reedy fibrancy condition which often appears in the
literature. In particular, this condition would guarantee that for m,n ě 0 the canonical map

Xm ˆ
X0

Xn ÝÑ Xm
h
ˆ
X0

Xn

is a weak equivalence. Our definition corresponds to the choice of the projective model structure
instead of the injective (Reedy) model structure, which is slightly different (though Quillen
equivalent) compared to [Rez01]. We will explain this in more detail in Section 1.2.4.

Definition 1.2.7. We will refer to the spaces Xn as the levels of the Segal space X .

Example 1.2.8. Let C be a small topological category. Recall that its nerve is the simplicial set

NpC qn “ Homprns,C q “
ğ

x0,...,xnPObC

HomC px0,x1q ˆ ¨ ¨ ¨HomC pxn´1,xnq,

with face maps given by composition of morphisms, and degeneracies by insertions of identities.
The nerve NpC q is a Segal space. Moreover, a simplicial set, viewed as a simplicial space with
discrete levels, satisfies the Segal condition if and only if it is the nerve of an (ordinary) category.

Segal spaces as p8,1q-categories

The above example motivates the following interpretation of Segal spaces as models for p8,1q-categories.
If X‚ is a Segal space then we view the set of 0-simplices of the space X0 as the set of objects. For
x,y P X0 we view

HomX px,yq “ txu ˆh
X0

X1 ˆh
X0

tyu

as the p8,0q-category, i.e. the space, of arrows from x to y. More generally, we view Xn as the
p8,0q-category, i.e. the space, of n-tuples of composable arrows together with a composition. Note
that given an n-tuple of composable arrows, the Segal condition implies that the corresponding fiber
of the Segal map Xn Ñ X1 ˆh

X0
¨ ¨ ¨ ˆh

X0
X1 is a contractible space. The map Xn Ñ X1 determined by

the functor r1s Ñ rns,0 ă 1 ÞÑ 0 ă n can be thought of as “composition”, and thus we can think of
the n-tuple as having a contractible space of possible compositions. Moreover, one can interpret
paths in the space X1 of 1-morphisms as 2-morphisms, which are invertible up to homotopies, which
in turn are 3-morphisms, and so forth.

The homotopy category of a Segal space

To a higher category one can intuitively associate an ordinary category, its homotopy category,
which has the same objects and whose morphisms are 2-isomorphism classes of 1-morphisms. For
Segal spaces, one can realize this idea as follows.
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Section 1.2. Complete Segal spaces 24

Definition 1.2.9. The homotopy category h1pXq of a Segal space X “ X‚ is the (ordinary) category
whose objects are the 0-simplices of the space X0 and whose morphisms between objects x,y P X0
are

Homh1pXqpx,yq “ π0 pHomX px,yqq “ π0

ˆ

txu
h
ˆ
X0

X1
h
ˆ
X0

tyu

˙

For x,y,z P X0, the following diagram induces the composition of morphisms, as weak equivalences
induce bijections on π0.

ˆ

txu
h
ˆ
X0

X1
h
ˆ
X0

tyu

˙

ˆ

ˆ

tyu
h
ˆ
X0

X1
h
ˆ
X0

tzu

˙

ÝÑ txu
h
ˆ
X0

X1
h
ˆ
X0

X1
h
ˆ
X0

tzu

»
ÐÝ txu

h
ˆ
X0

X2
h
ˆ
X0

tzu

ÝÑ txu
h
ˆ
X0

X1
h
ˆ
X0

tzu .

Example 1.2.10. Given a small (ordinary) category C , the homotopy category of its nerve, viewed
as a simplicial space with discrete levels, is equivalent to C ,

h1pNpC qq » C .

The above example motivates the following definition of equivalences of Segal spaces.

Definition 1.2.11. A map f : X Ñ Y of Segal spaces is a Dwyer-Kan equivalence if

1. the induced map h1p f q : h1pXq Ñ h1pY q on homotopy categories is essentially surjective, and

2. for each pair of objects x,y P X0 the induced map HomX px,yq Ñ HomY p f pxq, f pyqq is a weak
equivalence.

1.2.4 Complete Segal spaces

We would like the equivalences of Segal spaces to be the Dwyer-Kan equivalences. However,
instead of considering all Segal spaces and their the Dwyer-Kan equivalences, it turns out that we
can instead consider a full subcategory of Segal spaces which satisfy an extra condition called
completeness, for which Dwyer-Kan equivalences have an equivalent, simpler, description. To make
sense of this, we need to first introduce the model categories involved.
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The model structures of Segal spaces

We now describe various model structures on the category sSpace of simplicial spaces in this
section. Ultimately, the goal is to have a model category whose fibrant objects deserve to be called
“p8,1q-categories” and whose equivalences are analogs of equivalences of categories. We will first
introduce model categories whose fibrant objects are Segal spaces. Then, in the next step, we will
fix the weak equivalences. We refer to [Rez01] and [Hor15] for more details.

Let us first consider the injective and projective model structures on the category of simplicial
spaces, denoted by sSpacec and sSpace f , respectively. Note that the fibrant objects in sSpace f
are the levelwise fibrant ones, while the fibrant objects of sSpacec turn out to be the Reedy fibrant
simplicial spaces[b]. Conversely, every object in sSpacec is cofibrant, see for example [Hir03,
Corollary 15.8.8.]. These model categories are Quillen equivalent (via the identity functor).

In the first step we perform left Bousfield localizations of the previous model structures sSpacec
and sSpace f with respect to the morphisms

∆
1 \∆ 0 ¨ ¨ ¨ \∆ 0 ∆

1 ÝÑ ∆
n.

This provides two model categories, denoted sSpaceSe
c and sSpaceSe

f , which still are Quillen

equivalent. For the injective model structure, it is immediate that fibrant objects in sSpaceSe
c satisfy

Xn
»
ÝÑ X1 ˆX0 ¨ ¨ ¨ ˆX0 X1 and thus are Reedy fibrant Segal spaces. For the projective model structure,

it follows from [Hor15] that the fibrant objects in sSpaceSe
f satisfy Xn

»
ÝÑ X1 ˆh

X0
¨ ¨ ¨ ˆh

X0
X1 and thus

are Segal spaces[c].

Complete Segal spaces

Even though the model categories sSpaceSe
c and sSpaceSe

f have the (Reedy fibrant) Segal spaces
as their fibrant objects, there are not enough weak equivalences: every weak equivalence between
Segal spaces is indeed a Dwyer-Kan equivalence, but there are more Dwyer-Kan equivalences.

This problem can be circumvented by further localizing the model structures. For this new model
structure, the weak equivalences between Segal spaces turn out to be exactly the Dwyer-Kan
equivalences. We will see that these further localized model structures have fewer fibrant objects,
which are the complete (Reedy fibrant) Segal spaces. We will focus on the case of the projective
model structure, since the other case can be found spelled out in great detail in many references, for
example the original [Rez01], but to our knowledge the former has so far only appeared in [Hor15].

[b]See for example [Hir03, Theorem 15.8.7] for a proof that the injective and Reedy model structures coincide.
[c]Note that this terminology is not consistent throughout the literature: often “Segal space” includes the Reedy fibrancy

condition. Our examples will not be Reedy fibrant, which is the reason for our choice of terminology.
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Moreover, although we will phrase it for the projective model structure, the first part works the
same in the injective case. The difference appears when computing the involved mapping spaces
explicitly, see the remark below.

Intuitively, the condition we would like to impose is that the underlying 8-groupoid of invertible
morphisms of the Segal space X‚ is already encoded by the space X0. To translate this, we first need
to understand what the space of (homotopy) invertible morphisms of X‚ is.

Let f be an element in X1 with source and target x and y, i.e. its images under the two face maps
X1 Ñ X0 are x and y. It is called invertible if its image under

txu ˆ
X0

X1 ˆ
X0

tyu ÝÑ txu
h
ˆ
X0

X1
h
ˆ
X0

tyu ÝÑ π0

ˆ

txu
h
ˆ
X0

X1
h
ˆ
X0

tyu

˙

“ Homh1pXqpx,yq ,

is an invertible morphism in h1pXq, i.e. it has a left and right inverse.

To define the space of invertible morphisms, consider the walking isomorphism Ir1s, which is the
category with two objects and one invertible morphism between them,

–

Mapping the walking isomorphism into an arbitrary category C we get the isomorphisms of C , and
therefore the information about its underlying groupoid. Mimicking this procedure for a Segal space
X‚, we consider the derived mapping space

MapsSpaceSe
f

pNpIr1sq,Xq.

Moreover, an analog of [Rez01, Lemma 5.8] shows that if an element in X1 is invertible, any element
in the same connected component will also be invertible. Thus we define the space of invertible
morphisms in X‚ to be the homotopy pullback[d]

X inv
1 X1

π0MapsSpaceSe
f

pNpIr1sq,Xq π0X1 “ π0MapsSpaceSe
f

p∆ 1,Xq

h{

Here, the bottom arrow arises from the obvious functor r1s Ñ Ir1s.

Finally, identity morphisms in X‚ should be invertible. Indeed, the degeneracy map s0 : r1s Ñ r0s

factors as r1s Ñ Ir1s Ñ r0s and induces a map

X0 Ñ X inv
1 .

[d]To compare with the definition in [Hor15], note that the pullback is a homotopy pullback since the map X1 Ñ π0pX1q

is a fibration.
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Definition 1.2.12. A Segal space X‚ is complete if the map X0 Ñ X inv
1 is a weak equivalence. We

denote the full subcategory of SeSp whose objects are complete Segal spaces by C S Sp “

C S Sp1.

Example 1.2.13. Let C be a category. Then NpC q is a complete Segal space if and only if there are
no non-identity isomorphisms in C , i.e. the underlying groupoid of C is a set (viewed as a category
with only identity morphisms).

In order to compute X inv
1 explicitly, we have to be able to describe the (derived) mapping space

MapsSpaceSe
f

pNpIr1sq,Xq.

Lemma 1.2.14. We have a homotopy pullback square

MapsSpaceSe
f

pNpIr1sq,Xq X3

X0 ˆ X0 X1 ˆ X1 .

t0,2u\t1,3u t0,2u\t1,3u
h{

Proof. Note that since X‚ was assumed to be a Segal space, it is fibrant, but NpIr1sq might not be
cofibrant[e]. So to compute the desired mapping space, we cofibrantly replace NpIr1sq and then
compute the mapping space in the underlying category,

MapsSpaceSe
f

pNpIr1sq,Xq » MapsSpacepcofpNpIr1sqq ,Xq.

To compute the cofibrant replacement, the crucial observation (originally by [Rez01], reformulated
by [BSP21]) is that the nerve of Ir1s can be obtained by the pushout of simplicial sets

K “ ∆
3 \

∆ t0,2u\∆ t1,3u p∆
0 \ ∆

0q.

This can be seen as contracting the edges t0,2u and t1,3u in the 3-simplex:

0 1

3

2

We use an argument similar to that in [JFS17, Remark 3.4], which observes the following: K is
given by a strict pushout along a diagram of cofibrant objects of which one arrow is an inclusion.
By [Lur09a, A.2.4.4], this is a homotopy pushout in the injective model structure and therefore

[e]Note that for the injective model structure, it is cofibrant and therefore X inv
1 is just the subspace of X1 of invertible

morphisms.
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homotopy equivalent to the homotopy pushout in the projective model structure. So a cofibrant
replacement of K is given by taking the homotopy pushout of the same diagram,

cofpKq “ ∆
3 \h

∆ t0,2u\∆ t1,3u p∆
0 \ ∆

0q.

Finally, we obtain the space as the wanted homotopy pullback[f]

Complete Segal spaces as fibrant objects

There is a further model structure on the category of simplicial spaces which implements completeness.
It is obtained by a further left Bousfield localization, with respect to the morphism

∆
0 ÝÑ NpIr1sq.

This provides two Quillen equivalent model categories, denoted sSpaceCSe
c and sSpaceCSe

f . Fibrant

objects in sSpaceCSe
c , respectively sSpaceCSe

f , are Reedy fibrant complete Segal spaces, respectively
complete Segal spaces.

Summarizing, we have the following diagram

sSpacec sSpace f

sSpaceSe
c sSpaceSe

f

sSpaceCSe
c sSpaceCSe

f

where the horizontal arrows are Quillen equivalences induced by the identity and the vertical arrows
are localizations.

The following Proposition shows that in the localized model structure Dwyer-Kan equivalences
of Segal spaces indeed are weak equivalence, and therefore we have fixed the concern mentioned
above. We refer to [Hor15, Theorem 5.15] for a proof, which makes substantial use of the analogous
result for Reedy fibrant Segal spaces in sSpaceCSe

c from [Rez01, Theorem 7.7].

Theorem 1.2.15. Let X and Y be Segal spaces. A morphism f : X Ñ Y is a weak equivalence in
sSpaceCSe

f if and only if it is a Dwyer-Kan equivalence.

[f]This can be compared to Rezk’s definition using the zig-zag category 2 30 1 and requiring the morphisms 20
and 31 to be identities.
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As a consequence the obvious inclusions induce the following equivalences of categories:

C S Sprlwe´1
s ÝÑ SeSprDK ´1

s ÝÑ HopsSpaceCSe
f q ,

where DK and lwe stand for the subcategory of Dwyer-Kan and levelwise weak equivalences,
respectively.

This justifies the following definition.

Definition 1.2.16. An p8,1q-category is a complete Segal space.

Remark 1.2.17. We denote the category of Reedy fibrant complete Segal spaces by C S Spc, that
is to say the fibrant objects in sSpaceCSe

c . Remember that sSpaceCSe
c and sSpaceCSe

f are Quillen

equivalent, so that the embedding C S Spc Ă C S Sp induces an equivalence C S Spcrlwe´1
s Ñ

C S Sprlwe´1
s of which an inverse is given by the Reedy fibrant replacement functor p´qR.

Sometimes it turns out to be more useful to work in the model category sSpaceCSe
c as every object

is cofibrant. Note that the Reedy fibrant replacement functor does not change the homotopy type of
the levels.

Definition 1.2.18. The fibrant replacement functor in the model category sSpaceCSe
f sending a

Segal space to its fibrant replacement is called completion. In [Rez01] Rezk gave a rather explicit
construction of the completion of Segal spaces. He showed that there is a completion functor which
to every Segal space X associates a complete Segal space pX together with a map iX : X Ñ pX , which
is a Dwyer-Kan equivalence.

Remark 1.2.19. The completeness condition says that all invertible morphisms essentially are just
identities up to the choice of a path. In this sense, one might like to think of complete Segal spaces
as a homotopical version of skeletal[g] or reduced category, and, since any category is equivalent to
a reduced one, assuming this extra condition is harmless. However, the information on the invertible
morphisms is merely encoded in a different way, namely, in the spatial structure. Also, we would
like to remark that in the homotopical situation, this intuition might be misleading: indeed, instead
of thinking of a complete Segal space as having few invertible morphisms, it is better to think
of a complete Segal space as having a “maximal” space of objects. This is illustrated by [Rez01,
Corollary 6.6]. A good example to keep in mind is a special case of [Rez01, Remark 14.1]: given a
group G, we can view as a category with one object, and consider its nerve. Its completion is the
constant simplicial space BG.

Remark 1.2.20. It is worth noticing that sSpace f , sSpacec, sSpaceSe
f , sSpaceSe

c , sSpaceCSe
f , and

sSpaceCSe
c are all Cartesian closed simplicial model categories. In particular, for any simplicial

space X and any complete Segal space Y , the simplicial space Y X is a complete Segal space.

[g]A category is called skeletal if each isomorphism class contains just one element, see for example [Rie17].
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Section 1.3
Complete n-fold Segal spaces

As a model for p8,nq-categories, we will use complete n-fold Segal spaces, which were first
introduced by Barwick in his thesis and appeared prominently in Lurie’s [Lur09c]. Details can
be found e.g. in [Lur09b, BSP21, BR13]. p8,nq-categories are homotopical versions of weak
n-categories. Recall that n-categories are inductively built by taking categories (weakly) enriched
in pn ´ 1q-categories. For n “ 2 these are known as 2-categories (strict) or bicategories (weak).
Alternatively, one could choose to consider categories internal to pn ´ 1q-categories, i.e. they have a
whole pn ´ 1q-category of objects. For n “ 2 these were first introduced under the name of double
categories by Ehresmann in [Ehr63] and have been thoroughly studied in category theory. Therefore
we will call the higher versions thereof n-uple categories[h]. Even though we present our main
example as an n-fold Segal space in the next part, it actually arises from such an “n-uple” version as
we will see later on.

Moreover, it even comes from a more rigid model, namely from internal n-uple categories, which
are n-uple categories internal to simplicial sets. This model is the easiest to define, which is why we
start with it.

1.3.1 Internal n-uple categories

Iterating the approach in [Hor15], one obtains a model for p8,nq-uple-categories given by n-uple
categories internal to simplicial sets, i.e. categories internal to the category of pn´1q-uple categories
internal to simplicial sets. Unravelling the definition for n “ 2, there is a space of objects, a space
of “horizontal” 1-morphisms, a space of “vertical” 1-morphisms, and a space of 2-morphisms,
together with unit maps and composition maps. For larger n, there is a space of objects and suitable
spaces of higher morphisms “in all directions”, again together with unit maps and composition maps.
Equivalently, an n-uple category internal to simplicial sets is a simplicial object in (strict) n-fold
categories. This model has been discussed in [CH16].

Our bordism category defined in the next part secretly is such an internal n-uple category, however,
details on this model were not available at the time of writing this article, so we will present it in a
different way here.

Remark 1.3.1. Note that composition is well-defined on the nose, as opposed to the models we will
consider in the next sections.
[h]This is non-standard: usually they are called n-fold categories. However, by an unfortunate choice of terminology,

complete n-fold Segal spaces will correspond to n-categories. In order to hopefully reduce confusion we will instead be
consistent in using “uple” for internal versions and reserve “fold” for the enriched, globular version.
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1.3.2 n-uple and n-fold Segal spaces

Recall that an n-uple[i] simplicial space is a functor X : p∆ opqˆn Ñ Space. An n-uple Segal space is
an n-uple simplicial space with an extra condition ensuring it is the 8-analog of an n-uple category.

Definition 1.3.2. An n-uple Segal space is an n-uple simplicial space X “ X‚,...,‚ such that for every
1 ď i ď n, and every k1, . . . ,ki´1,ki`1, . . . ,kn ě 0,

Xk1,...,ki´1,‚,ki`1,...,kn

is a Segal space.

Defining a map of n-uple Segal spaces to be a map of the underlying n-uple simplicial spaces gives
a category of n-uple Segal spaces, SeSpn.

Imposing an extra globularity condition leads to a model for 8-analogs of n-categories:

Definition 1.3.3. An n-uple simplicial space X‚,...,‚ is essentially constant if the map from the
constant n-uple simplicial space X0,...,0 given by the degeneracy maps

X0,...,0 ÝÑ X

is a weak equivalence of n-uple simplicial spaces.

Definition 1.3.4. An n-fold Segal space is an n-uple Segal space X “ X‚,...,‚ such that for every
1 ď i ď n, and every k1, . . . ,ki´1 ě 0, the pn ´ iq-uple simplicial space

Xk1,...,ki´1,0,‚,...,‚

is essentially constant.[j]

Defining a map of n-fold Segal spaces to be a map of the underlying n-uple simplicial spaces gives a
category of n-fold Segal spaces, SeSpn.

Remark 1.3.5. Alternatively, one can formulate the conditions iteratively. First, an n-uple Segal
space is a simplicial object Y‚ in pn´1q-uple Segal spaces which satisfies the Segal condition. Then,
an n-fold Segal space is a simplicial object Y‚ in pn ´ 1q-fold Segal spaces which satisfies the Segal
condition and such that Y0 is essentially constant (as an pn ´ 1q-fold Segal space). To get back the
above definition, the ordering of the indices is crucial: Xk1,...,kn “ pYk1qk2,...,kn .
[i]Again, usually, this is called an n-fold simplicial space, but we use this terminology to emphasize the difference.
[j]To be consistent with our choice of “uple” versus “fold”, we could call an n-uple simplicial space which satisfies this

extra condition an n-fold simplicial space.
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Interpretation as higher categories

An n-fold Segal space can be thought of as a higher category in the following way.

The first condition means that this is an n-uple category, i.e. there are n different “directions” in
which we can “compose”. An element of Xk1,...,kn should be thought of as a composition consisting
of ki composable morphisms in the ith direction.

The second condition imposes that we indeed have a higher n-category, i.e. an n-morphism has as
source and target two pn ´ 1q-morphisms which themselves have the “same” (in the sense that they
are homotopic) source and target.

For n “ 2 one can think of this second condition as “fattening” the objects in a bicategory. A
2-morphism in a bicategory can be depicted as

ó

The top and bottom arrows are the source and target, which are 1-morphisms between the same
objects.

In a 2-fold Segal space X‚,‚, an element in X1,1 can be depicted as

X
0,0 Q

P
X 0,0

X 0,0
Q

P
X
0,0

ó

X1,0

P
Q

X1,0

X0,0 » X0,1 Q P X0,1 » X0,0

The images under the source and target maps in the first direction X1,1 Ñ X1,0 are 1-morphisms
which are depicted by the horizontal arrows. The images under the source and target maps in the
second direction X1,1 Ñ X0,1 are 1-morphisms, depicted by the dashed vertical arrows, which are
essentially just identity maps, up to homotopy, since X0,1 » X0,0. Thus, here the source and target
1-morphisms (the horizontal ones) themselves do not have the same source and target anymore, but
up to homotopy they do.

The same idea works with higher morphisms, in particular one can imagine the corresponding
diagrams for n “ 3. A 3-morphism in a tricategory can be depicted as

32



Section 1.3. Complete n-fold Segal spaces 33

⇛

whereas a 3-morphism, i.e. an element in X1,1,1 in a 3-fold Segal space X can be depicted as

⇛
Here the dotted arrows are those in X0,1,1 » X0,0,1 » X0,0,0 and the dashed ones are those in X1,0,1 »

X1,0,0.

Thus, we should think of the set of 0-simplices of the space X0,...,0 as the objects of our category,
and elements of X1,...,1,0,...,0 as i-morphisms, where 0 ă i ď n is the number of 1’s. Pictorially, they
are the i-th “horizontal” arrows. Moreover, the other “vertical” arrows are essentially just identities
of lower morphisms. Similarly to before, paths in X1,...,1 should be thought of as pn ` 1q-morphisms,
which therefore are invertible up to a homotopy, which itself is an pn ` 2q-morphism, and so forth.

The homotopy bicategory of a 2-fold Segal space

To any higher category one can intuitively associate a bicategory having the same objects and
1-morphisms, and with 2-morphisms being 3-isomorphism classes of the original 2-morphisms.

Definition 1.3.6. The homotopy bicategory h2pXq of a 2-fold Segal space X “ X‚,‚ is defined as
follows: objects are the points of the space X0,0 and

Homh2pXqpx,yq “ h1
`

HomX px,yq
˘

“ h1

ˆ

txu
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

tyu

˙

as Hom categories. Horizontal composition is defined as follows:

ˆ

txu
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

tyu

˙

ˆ

ˆ

tyu
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

tzu

˙

ÝÑ txu
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

tzu

Ð̃Ý txu
h
ˆ

X0,‚

X2,‚
h
ˆ

X0,‚

tzu

ÝÑ txu
h
ˆ

X0,‚

X1,‚
h
ˆ

X0,‚

tzu .
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The second arrow happens to go in the wrong way but it is a weak equivalence. Therefore after
taking h1 it turns out to be an equivalence of categories, and thus to have an inverse (assuming the
axiom of choice).

A proof that this definition indeed gives a bicategory will be the subject of a subsequent article.

1.3.3 Complete and hybrid n-fold Segal spaces

As with (1-fold) Segal spaces, we need to impose an extra condition to ensure that invertible
k-morphisms are paths in the space of pk ´ 1q-morphisms. Again, there are several ways to include
its information.

Definition 1.3.7. Let X be an n-fold Segal space and 1 ď i, j ď n. It is said to satisfy

CSSi if for every k1, . . . ,ki´1 ě 0,

Xk1,...,ki´1,‚,0,...,0

is a complete Segal space.

SC j if for every k1, . . . ,k j´1 ě 0,

Xk1,...,k j´1,0,‚,...,‚

is discrete, i.e. a discrete space viewed as a constant pn ´ j ` 1q-fold Segal space.

Definition 1.3.8. An n-fold Segal space is

1. complete, if for every 1 ď i ď n, X satisfies (1.3.7).

2. a Segal n-category if for every 1 ď j ď n, X satisfies (1.3.7).

3. m-hybrid for m ě 0 if condition (1.3.7) is satisfied for i ą m and condition (1.3.7) is satisfied
for j ď m.

Denote the full subcategory of SeSpn of complete n-fold Segal spaces by C S Spn.

Remark 1.3.9. Note that an n-hybrid n-fold Segal space is a Segal n-category, while an n-fold Segal
space is 0-hybrid if and only if it is complete.

For our purposes, the model of complete n-fold Segal spaces is well-suited, which leeds us to the
following definition.

Definition 1.3.10. An p8,nq-category is a complete n-fold Segal space.
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The underlying model categories

Similarly to subsection 1.2.4 there are model categories running in the background. We can consider
either the injective or projective model structure on the category of n-uple simplicial spaces sSpacen,
which we denote by sSpacen

c respectively sSpacen
f . Bousfield localizations at the analogs of the

Segal maps give model structures whose fibrant objects are (Reedy fibrant) n-uple Segal spaces,
further localizing at maps governing essential constancy, the fibrant objects become (Reedy fibrant)
n-fold Segal spaces, and a third localization at a map imposing completeness gives model structures
sSpaceCSe

n,c respectively sSpaceCSe
n, f whose fibrant objects are (Reedy fibrant) complete n-fold Segal

spaces, see [Lur09b, BSP21] and [JFS17, Appendix]. Note that again, the identity map induces a
Quillen equivalence between sSpacen

c and sSpacen
f which descends to the localizations.

Alternatively, and by [JFS17, Appendix, Proposition A.9] equivalently, the construction of complete
Segal objects for absolute distributors from [Lur09b] provides an iterative definition of these model
categories by considering simplicial objects in a suitable model category (which is taken to be
the appropriate localization of sSpacen´1,c respectively sSpacen´1, f ) and localizing at the maps
governing the Segal condition, essential constancy, and/or completeness in the new simplicial
direction.

[Lur09b] also provides a model category whose fibrant objects are Segal category objects in some
suitable underlying model category, thus allowing an iteration of the construction of Segal categories
as well. Applying this construction m times to the above one for complete pn ´ mq-fold Segal spaces
provides a model category whose fibrant objects are m-hybrid n-fold Segal spaces.

One can show (see e.g. in [Bar05, Lur09b, BR13, BR20]) that equivalences between (possibly
non-complete) n-fold Segal spaces for this model structure are exactly the Dwyer-Kan equivalences,
which are defined inductively. For this we need the following inductive definition of the homotopy
category of an n-fold Segal space:

Definition 1.3.11. The homotopy category h1pXq of an n-fold Segal space X‚,...,‚ is the following
category: its objects are the 0-simplices, i.e. the points of X0,...,0. For x,y two objects, we let

HomX px,yq‚,...,‚ :“ txu
h
ˆ

X0,‚,...,‚

X1,‚,...,‚
h
ˆ

X0,‚,...,‚

tyu

be the pn ´ 1q-fold Segal space of morphisms[k] from x to y. Now let morphisms in h1pXq from x to
y be the set of isomorphism classes of objects in h1pHomX px,yq‚,...,‚q, which is already defined by
induction. Composition is defined using the Segal condition in the first index.

Definition 1.3.12. A morphism f : X Ñ Y of n-fold Segal spaces is a Dwyer-Kan equivalence if

1. the induced functor h1p f q : h1pXq Ñ h1pY q is essentially surjective.

[k]We will revisit this notion in 1.3.4.
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2. for each pair of objects x,y P X0,...,0, the induced morphism HomX px,yq Ñ HomY p f pxq, f pyqq

is a Dwyer-Kan equivalence of pn ´ 1q-fold Segal spaces.

Again we obtain equivalences of complete Segal spaces

NpC S Spn, lweq ÝÑ NpSeSpn,DK q ÝÑ NpsSpacen,W
CSe
f q ,

where W CSe
f is the subcategory of weak equivalences in the localization sSpaceCSe

n, f .

Remark 1.3.13. Note that C S Spn is the subcategory of fibrant objects for a left Bousfield
localization of sSpacen, f and weak equivalences of complete n-fold Segal spaces are level-wise

weak equivalences. Denoting the category of fibrant objects in sSpaceCSe
n,c , the Reedy fibrant

complete n-fold Segal spaces, by C S Spn,c, the Quillen equivalence between sSpacen,c and
sSpacen, f induces an equivalence NpC S Spn,c, lweq ÝÑ NpC S Spn, lweq, whose inverse is
given by Reedy fibrant replacement p´qR.

Recall from Remark 1.3.5 that we can think of an n-fold Segal space in an iterative way: we can
view an n-fold Segal space as a Segal object in pn ´ 1q-fold Segal spaces, which we in turn can think
of a Segal object in Segal objects in pn ´ 2q-fold Segal spaces, etc. Then condition (CSSi) above
means that the ith iteration is a complete Segal space object. For more on this point of view, see
[Lur09b, Hau18]

Definition 1.3.14. Given an n-fold Segal space X‚,...,‚, one can apply the completion functor
iteratively to obtain a complete n-fold Segal space pX‚,...,‚, its (n-fold) completion. This yields a
map X Ñ pX , the completion map, which is universal among all maps (in the homotopy category)
to complete n-fold Segal spaces. It is a left adjoint to the embedding of C S Spnrlwe´1

s into
SeSpnrlwe´1

s.

If an n-fold Segal space X‚,...,‚ satisfies (SC j) for j ď m, we can apply the completion functor just to
the last pn ´ mq indices to obtain an m-hybrid n-fold Segal space pXm

‚,...,‚, its m-hybrid completion.

1.3.4 Constructions of n-fold Segal spaces

We describe several intuitive constructions of p8,nq-categories in terms of (complete) n-fold Segal
spaces.

Truncation

Given an p8,nq-category, for k ď n its p8,kq-truncation, or k-truncation, is the p8,kq-category
obtained by discarding the non-invertible m-morphisms for k ă m ď n.
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In terms of n-fold Segal spaces, there is a functor τk : SeSpn Ñ SeSpk sending X “ X‚,...,‚ to its
k-truncation, the k-fold Segal space

τkX “ X‚, . . . ,‚
loomoon

k times

,0, . . . ,0
loomoon

n´k times

.

If X is m-hybrid then so is τkX by the definition of the conditions (1.3.7) and (1.3.7). In particular, if
X is complete, then τkX is as well, and thus, the truncation of an p8,nq-category is an p8,kq-category.

Caution 1.3.15. Truncation does not behave well with respect to completion, i.e. the truncation of
the completion is not the completion of the truncation. However, we get a map in one direction:

τkpXq //

��

τkppXq

zτkpXq

<<

In general, this map is not an equivalence. So in general one should always complete an n-fold
Segal space before truncating it. For example, for n “ 1 and a non-complete Segal Space X , the
truncation τ1pXq “ X0 is just the zeroth space, but the truncation of the completion will be equivalent
to the underlying 8-groupoid X inv

1 . The map in this case is given by the degeneracy map. In the
example X “ NpGq from Remark 1.2.19, the former is NpGq0 “ t˚u and the latter is BG, which are
not equivalent in general.
Remark 1.3.16. As explained above, the k-truncation of an p8,nq-category X should be the maximal
p8,kq-category contained in X . However, the image of the degeneracy

X 1,...,1
loomoon

k

,0,...,0 ãÑ X 1,...,1
loomoon

m

,0,...,0

consists exactly of the invertible m-morphisms for k ă m ď n if and only if X satisfies (1.3.7) for
k ă i ď n. For example, if X “ X‚ is a (1-fold) Segal space then X0 is the underlying 8-groupoid of
invertible morphisms if and only if X is complete.

Extension

Any p8,nq-category can be viewed as an p8,n`1q-category with only identities as pn`1q-morphisms.

In terms of n-fold Segal spaces, any n-fold Segal space can be viewed as a constant simplicial object
in n-fold Segal spaces, i.e. an pn ` 1q-fold Segal space which is constant in the first index. Explicitly,
if X‚,...,‚ is an n-fold Segal space, then εpXq‚,...,‚ is the constant simplicial object in the category of
Segal spaces given by X , i.e. it is the pn ` 1q-fold Segal space such that for every k ě 0,

εpXq‚,...,‚,k “ X‚,...,‚
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and the face and degeneracy maps in the last index are identity maps.

Lemma 1.3.17. If X is complete, then εpXq is complete.

Proof. Since X is complete, it satisfies (CSSi) for i ą 1. For i “ 0, we have to show that εpXq‚,0,...,0
is complete. This is satisfied because

pεpXq1,0,...,0qinv “ εpXq1,0,...,0 “ X0,...,0 “ εpXq0,0,...,0,

since morphisms between two elements x,y in the homotopy category of εpXq‚,k2,...,kn are just
connected components of the space of paths in Xk2,...,kn , and thus are always invertible.

We call ε the extension functor, which is left adjoint to τn. Moreover, the unit id Ñ τ1 ˝ ε of the
adjunction is the identity.

Inverting

Given an p8,nq-category, for k ď n we obtain an p8,kq-category by inverting the non-invertible
m-morphisms for k ă m ď n.

We saw that the extension functor ε had a right adjoint τn. It also has a left adjoint η , which formally
inverts all pn ` 1q-morphisms. For an n-fold Segal space X , this is given by realizing the last index,

pηXqk1,...,kn “ |Xk1,...,kn,‚|.

Here geometric realization amounts to taking the diagonal of the bisimplicial set Xk1,...,kn,‚. Since
the following diagram of right adjoints commutes, the diagram of left adjoints commutes as well.
Therefore, completion and inverting commute.

SeSpn`1 SeSpn

C S Spn`1 C S Spn

%

%

yp´q

η

%

ε

yp´q

%

η

ε

The higher category of morphisms and loopings

Given two objects x,y in an p8,nq-category, morphisms from x to y should form an p8,n ´

1q-category.
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This can be realized for n-fold Segal spaces, which is one of the main advantages of this model for
p8,nq-categories.

Definition 1.3.18. Let X “ X‚,¨¨¨ ,‚ be an n-fold Segal space. As we have seen above one should
think of objects as vertices of the space X0,...,0. Let x,y P X0,...,0. The pn ´ 1q-fold Segal space of
morphisms from x to y is

HomX px,yq‚,¨¨¨ ,‚ “ txu
h
ˆ

X0,‚,¨¨¨ ,‚

X1,‚,¨¨¨ ,‚
h
ˆ

X0,‚,¨¨¨ ,‚

tyu .

Remark 1.3.19. Note that if X is m-hybrid, then HomX px,yq is pm ´ 1q-hybrid.

Example 1.3.20 (Compatibility with extension). Let X be an p8,0q-category, i.e. a space, viewed
as an p8,1q-category, i.e. a constant (complete) Segal space εpXq‚, εpXqk “ X . For any two objects
x,y P εpXq0 “ X the p8,0q-category, i.e. the space, of morphisms from x to y is

HomεpXqpx,yq “ txu
h
ˆ

εpXq0

εpXq1
h
ˆ

εpXq0

tyu “ txu
h
ˆ
X

tyu “ PathX px,yq ,

the path space in X , which coincides with what one expects by the interpretation of paths, homotopies,
homotopies between homotopies, etc. being higher invertible morphisms.

Definition 1.3.21. Let X be an n-fold Segal space, and x P X0 an object in X . Then the looping of X
at x is the pn ´ 1q-fold Segal space

ΩxpXq‚,...,‚ “ HomX px,xq‚,...,‚ “ txu ˆh
X0,‚,...,‚

X1,‚,...,‚ ˆh
X0,‚,...,‚

txu.

In the following, it will often be clear at which element we are looping, e.g. if there essentially is
only one element, or at a unit for a monoidal structure, which we define in the next section. Then
we omit the x from the notation and just write

ΩX “ Ω pXq “ ΩxpXq.

We can iterate this procedure as follows.

Definition 1.3.22. Let Ω 0
x pXq “ X . For 1 ď k ď n, let the k-fold iterated looping be the pn ´ kq-fold

Segal space
Ω

k
x pXq “ ΩxpΩ

k´1
x pXqq,

where we view x as a trivial k-morphism via the degeneracy maps, i.e. an element in Ω k´1
x pXq0...,0 Ñ

X 1,...,1
loomoon

k

,0,...,0.

Looping k times commutes with taking the k-hybrid completion up to weak equivalence, since
completion is taken index by index:
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Let X be a k-hybrid n-fold Segal space. Then for the k-hybrid completion X̂ , which is the completion
in the last pn ´ kq variables, we have that Ω kpX̂q

»
ÝÑ X̂1, . . .1

loomoon

k

,‚,...,‚ is complete, so by the universal

property of completion, the horizontal map in the following diagram exists:

{

Ω kpXq Ω kpX̂q

Ω kpXq

Lemma 1.3.23. Let X be a k-hybrid n-fold Segal space. Then the induced map

{

Ω
kpXq

»
ÝÑ Ω

kpX̂q

is a level-wise weak equivalence.

Proof. In the diagram
{

Ω kpXq Ω kpX̂q

Ω kpXq

we know that the vertical map is a DK-equivalence, since completions are DK-equivalences.
Moreover, since X is hybrid, we have that Ω kpXq

»
ÝÑ X1, . . .1

loomoon

k

,‚,...,‚ and Ω kpX̂q
»
ÝÑ X̂1, . . .1

loomoon

k

,‚,...,‚,

and by definition of (hybrid) completion, X1, . . .1
loomoon

k

,‚,...,‚ Ñ X̂1, . . .1
loomoon

k

,‚,...,‚ is just a completion, so it is

a DK-equivalence. Thus, in the diagram

{X1, . . .1
loomoon

k

,‚,...,‚ X̂1, . . .1
loomoon

k

,‚,...,‚

X1, . . .1
loomoon

k

,‚,...,‚

by the two-out-of-three property, the horizontal morphism is as well. But since both {X1, . . .1
loomoon

k

,‚,...,‚

and X̂1, . . .1
loomoon

k

,‚,...,‚ are complete, it is a level-wise equivalence.
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n-fold from n-uple Segal spaces

We can extract the maximal n-fold Segal space from an n-uple one by the following procedure.
Let us recall and introduce some notation for various model structures on the category of n-uple
simplicial spaces.

• sSpacepCqSe
n, f , where fibrant objects are (complete) n-fold Segal spaces.

• sSpacepCqSe
n,c , where fibrant objects are Reedy fibrant (complete) n-fold Segal spaces.

• sSpacen, f
Se , where fibrant objects are n-uple Segal spaces.

• sSpacen,c
Se , where fibrant objects are Reedy fibrant n-uple Segal spaces.

From now, let ˚ P tc, f u. There are (two) Quillen adjunctions

sSpaceSe
n,˚

id
Ô
id

sSpacen,˚
Se .

Let us denote (in a rather unusual way) L :“ Rid : NpsSpaceSe
n,˚,w.e.q Ñ NpsSpacen,˚

Se ,w.e.q.
Observe that on fibrant objects, L is nothing but the inclusion of (possibly Reedy fibrant) n-fold
Segal spaces into (possibly Reedy fibrant) n-uple Segal spaces. After [Hau18, Proposition 4.12], we
know it has a right adjoint R. For the given (possibly Reedy fibrant) n-uple Segal space X , we wish
to compute RpXq. By adjunction, we know that

RpXq‚,...,‚ » Maph
sSpaceSe

n,˚

`

∆
‚⃗,RpXq

˘

» Maph
sSpacen,˚

Se

`

Lp∆
‚⃗q,X

˘

,

where ∆ k⃗ for k⃗ “ pk1, . . . ,knq is the n-fold simplicial set represented by rk1s ˆ ¨ ¨ ¨ ˆ rkns P ∆ ˆn, and
Maph denotes the derived mapping space.

We will now find an explicit way to compute RpXq by finding cofibrant replacements of Lp∆ k⃗q. We
start by recalling certain strict n-categories of the desired shapes, which are all objects in Joyal’s
category Θn [Rez10].

For k⃗ “ pk1, . . . ,knq, let Θ ‚⃗ be the walking k⃗-tuple of n-morphisms which is the strict n-category from
[JFS17, Definition 5.1]. We do not want to recall the full definition here, but rather the intuition:

• For k⃗ “ p1,0, . . . ,0q, the category Θ k⃗ “ is the walking 1-morphism.

• For k⃗ “ p2,0, . . . ,0q, the category Θ k⃗ “ is the walking composable pair of 1-morphisms.

• For k⃗ “ p2,1, . . . ,0q, the strict 2-category Θ k⃗ “ is the walking horizontally

composable pair of 2-morphisms.
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• For k⃗ “ p3,2, . . . ,0q, we have the strict 2-category Θ k⃗ “

• More generally, for k⃗ “ pk1, . . . ,knq, the strict n-category Θ ‚⃗ has k1 ¨ ¨ ¨kn n-morphisms which
are composable following the pattern of a grid of dimension k1 ˆ ¨¨ ¨ ˆ kn.

The elementary building blocks for these categories are Θ pnq, where pnq “ p1, . . . ,1
loomoon

n

,0, . . . ,0q. All

others are built by gluing these in a grid of of dimension k1 ˆ¨¨ ¨ˆkn. In [BSP21] Barwick–Schommer-Pries
use the following definition, which can been easily seen to be equivalent to the one in [JFS17] by
induction:

Definition 1.3.24. Let C1 be the walking 1-morphism, i.e. the category with two objects and one
non-identity morphism from one object to the other, C1 “ t u. The strict n-category Θ pnq is
defined inductively by the pushout square

t0,1u ˆΘ pn´1q C1 ˆΘ pn´1q

t0,1u ˆ t˚u Θ pnq.

Note that this immediately implies the existence of a surjective “collapse” map cn : Cn Ñ Θ pnq,
where Cn “ pC1qˆn is the walking n-morphism as a strict n-uple category.

The n-fold nerve of Θ k⃗ is

• levelwise fibrant (because Θ k⃗ is discrete).

• a Segal space (because Θ k⃗ is a strict n-category).

• complete (because Θ k⃗ is reduced).

Let us thus abuse notation and still write Θ k⃗ for this (complete) n-fold Segal space. Now we can
write the formula for the cofibrant replacement, and therefore the recipe for finding the underlying
n-fold Segal space.

Theorem 1.3.25. Given a n-uple Segal space X, its maximal underlying n-fold Segal space has
levels, for k⃗ “ pk1, . . . ,knq P p∆ opqn,

R pX q⃗k “ Maph
sSpacen,˚

Se
pΘ k⃗,Xq.

Since Θ ‚⃗ is an n-fold cosimplicial object in strict n-categories (see [JFS17]), this defines a (complete)
n-fold Segal space.
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To prove this Theorem, we need to understand what the cofibrant replacement Lp∆ ‚⃗q is. The first
step is a tool to compute the right hand expression in the Theorem, namely, an explicit cofibrant
replacement of Θ k⃗.

Proposition 1.3.26. For n “ 1, the category Θ p1q, or rather its nerve, is cofibrant in the projective
model structure sSpace1, f

CSe. For n ą 1, a cofibrant replacement of Θ pnq in the projective model
structure of n-uple Segal spaces sSpacen, f

Se is given inductively by replacing the pushouts in
the definition by homotopy pushouts and Θ pn´1q by its (inductively already defined) cofibrant
replacement.

Proof. Similarly to Section 1.2.4, we use an argument similar to that in [JFS17], Remark 3.4., which
observes the following: Θ p2q is given by a strict pushout along a diagram of cofibrant objects of
which one arrow is an inclusion. By [Lur09a, A.2.4.4], this is a homotopy pushout in the injective
model structure and therefore homotopy equivalent to the homotopy pushout in the projective model
structure. So a cofibrant replacement of Θ p2q is given by taking the homotopy pushout of the same
diagram,

t0,1u ˆC1 C2

t0,1u ˆ t˚u cofpΘ p2qq

h{

Now we proceed by induction. Assume we have shown the statement for k ă n and we have a
cofibrant replacement cofpΘ pkqq given as in the Proposition. Then, since the map t0,1u ãÑ C1 is a
cofibration in the projective model structure, the map t0,1u ˆ cofpΘ pn´1qq ãÑ C1 ˆ cofpΘ pn´1qq is
a cofibration. Moreover, t0,1u ˆ cofpΘ pn´1qq, C1 ˆ cofpΘ pn´1qq, and t0,1u ˆ t˚u are all cofibrant,
so we can use the above-mentioned [Lur09a, A.2.4.4], again to see that the strict pushout, which is
weakly equivalent to Θ pnq, is a homotopy pushout, and moreover cofibrant. Summarizing, it is a
cofibrant replacement of Θ pnq.

Remark 1.3.27. Similarly, we can obtain cofibrant replacements for Θ k⃗ as defined in [JFS17] by
replacing the pushouts in the definition by homotopy pushouts.

The remaining ingredient in the proof of the Theorem is the following Lemma.

Lemma 1.3.28. The natural map ∆ k⃗ Ñ Θ k⃗ is a weak equivalence in sSpaceSe
n,˚.

Proof. We need to show that for any fibrant object Y in sSpaceSe
n,˚ the induced map Maph

sSpaceSe
n,˚

pΘ k⃗,Y q Ñ

Maph
sSpaceSe

n,˚
p∆ k⃗,Y q is a weak equivalence of simplicial sets.
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We show the claim for k⃗ “ pkq proceeding by induction using the explicit cofibrant replacement
from the previous Proposition. For k “ 1, this is true, since Θ p1q “ ∆ p1q “ ∆ 1. Assume we have
proven the statement for l ă k. Then

MaphpΘ pkq,Y q
»

ÝÑMaphpC1 ˆΘ
pk´1q,Y q

h
ˆ

Maphpt0,1uˆΘ pk´1q,Y q

Maphpt0,1u,Y q

» MaphpC1 ˆΘ
pk´1q,Y q

h
ˆ

Y ˆ2
0,‚,...,‚

Y ˆ2
0,...,0

» MaphpC1 ˆΘ
pk´1q,Y q

» MaphpΘ pk´1q,HompC1,Y qq.

Here the first equivalence uses that the cofibrant replacement of Θ pkq is the homotopy pushout as
described in the previous Proposition, the next equivalence computes the mapping spaces on the
right and below the times symbol, the third equivalence uses essential constancy of Y , i.e. condition
(ii) in Definition 1.3.4, and the last one uses that n-fold Segal spaces are Cartesian closed.

By the induction hypothesis, the natural map ∆ pk´1q Ñ Θ pk´1q induces an equivalence

MaphpΘ pk´1q,HompC1,Y qq
»
ÝÑ Maphp∆

pk´1q,HompC1,Y qq » Maphp∆
pkq,Y q » Ypkq.

A similar argument works for general k⃗.

Remark 1.3.29. The above Lemma is equivalent to the observation that the model structure
sSpaceSe

n,˚ can be obtained as the left Bousfield localization of sSpacen,˚
Se along ∆ k⃗ Ñ Θ k⃗.

Proof of Theorem 1.3.25. The following equivalences are compatible with the cosimplicial structure
of ∆ ‚⃗ and Θ ‚⃗:

RpX q⃗k – Maph`

∆
k⃗,RpXq

˘

» Maph`

Lp∆
k⃗q,X

˘ Lemma1.3.28
ÐÝÝÝÝÝÝÝ

»
Maph`

LpΘ k⃗q,X
˘

» MaphpΘ k⃗,Xq .
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Section 2.1
The complete n-fold Segal space of closed intervals

In this section we define a complete Segal space Int‚ of closed intervals in R which will form the
basis of the n-fold Segal space of bordisms. It will be a tool to record where (in the time direction)
the bordisms can be cut. In particular, there will be a forgetful functor from bordisms to these closed
intervals. We start by defining an internal category of closed intervals in R, whose nerve will give a
complete Segal space of certain tuples of closed intervals. However, for our model of the bordism
category, to avoid having to deal with manifolds with corners, we will instead want to interpret the
tuples of intervals as being closed in an open interval of finite length (instead of R). This will be
explained in 2.1.3. Finally, we could have chosen that open interval to always be p0,1q and thus
fix the “length” in the time direction of the bordism and its collars to be 1. This choice requires
rescaling and will be explained in 2.1.5.

2.1.1 Intc as an internal category

We first define a category internal to topological spaces Intc which gives rise to a strongly Segal
internal category Intc of closed intervals in R.

The topological space of objects of Intc is

Intc0 “ tpa,bq : a ă bu Ă R2 (2.1.1)

with the standard topology from R2. We interpret an element pa,bq P Intc0 as the closed interval
I “ ra,bs. This interpretation gives a bijection from the set of points of the topological space Intc0
to the set of closed bounded intervals:

Intc0 ÐÑ tclosed bounded intervals I “ ra,bs in R with non-empty interioru

which we use as an identification. In fact, Intc0 is a submanifold of R2 and to get the desired Kan
complex Intc0, we take smooth singular simplices (see e.g. [Lee13]), i.e. for l ě 0, the l-simplices
are pairs of smooth maps a,b : |∆ l|e Ñ R such that apsq ă bpsq for every s P |∆ l|e. Faces and
degeneracies are the usual ones. We view such an l-simplex as a closed interval bundle and denote
it by ra,bs Ñ |∆ l|e or pIpsqqsP|∆ l |e

“ papsq,bpsqqsP|∆ l |e
.

The topological space of morphisms of Intc is

Intc1 “ tpa0,a1,b0,b1q : a j ă b j for j “ 0,1, and a0 ď a1,b0 ď b1u Ă R4, (2.1.2)

again with the standard topology from R4. Now we interpret an element pa0,a1,b0,b1q P Intc1 as a
pair of ordered closed intervals I0 ď I1, where I0 “ ra0,b0s and I1 “ ra1,b1s. Here “ordered” means
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that a0 ď a1 and b0 ď b1. This gives an identification of the points of the topological space with
certain pairs of intervals:

Intc1 ÐÑ tI0 ď I1 : I j “ ra j,b js with a j ă b j for j “ 0,1, and a0 ď a1,b0 ď b1u.

As above Intc1 has the structure of a submanifold of R4 and by taking smooth singular simplices
we obtain a Kan complex Intc1 whose l-simplices now are quadruples of smooth maps a0,a1,b0,b1 :
|∆ l|e Ñ R such that a jpsq ă b jpsq for j “ 0,1, a0psq ď a1psq, and b0psq ď b1psq for every s P |∆ l|e.
We view such an l-simplex as a closed interval bundle with two closed subintervals and denote it by
pra0,b0s ď ra1,b1sq Ñ |∆ l|e or pI0psq ď I1psqq|∆ l |e

.

The face and degeneracy maps

Intc0 Intc1d

t

s

arise from forgetting and repeating an interval, respectively:

s : ra0,b0s ď ra1,b1s ÞÝÑ ra0,b0s,

t : ra0,b0s ď ra1,b1s ÞÝÑ ra1,b1s,

and
d : ra,bs ÞÝÑ ra,bs ď ra,bs.

Composition is given by remembering the outer intervals:

pra0,b0s ď ra1,b1sq ˝ pra1,b1s ď ra2,b2sq “ pra0,b0s ď ra2,b2sq .

Here s, t, and d are smooth maps, so Intc is a category internal to manifolds. Thus, when taking
smooth singular simplices to get Intc, all above assignments are well-defined for l-simplices as
well and commute with the faces and degeneracies. Moreover, s and t are fibrations since they are
restrictions of projections.

Remark 2.1.1. Note that even though we like to think of the l-simplices in Intc0 and Intc1 as “closed
interval bundles”, we do not treat them as such: face and degeneracy maps are not defined to be
pullbacks of the bundles, which would only be defined up to isomorphism; instead, they are defined
explicitly at the level of spaces to ensure that simplicial functoriality holds.

Summarizing, we obtain

Lemma 2.1.2. Intc is a strongly Segal internal category [a].

Moreover, the spaces of objects and morphisms are contractible:

[a]A strongly Segal internal category is a category C “ pC0,C1q internal to S “ Space Ă sSet such that the source
and target maps s, t : C1 Ñ C0 are fibrations of simplicial sets.
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Lemma 2.1.3. Intc0 » Intc1 » ˚.

Proof. The underlying topological space is contractible as a subspace of R2k, so the associated Kan
complex given by taking smooth simplices is also contractible.

2.1.2 Intc as a complete Segal space

We defined Intc as a strongly Segal internal category in the previous section. Its nerve is a Segal
space Intc‚ “ NpIntcq‚ (abuse of notation). Let us spell out this Segal space in more detail to become
more familiar with it.

For an integer k ě 0, let

Intck “ tpa,bq “ pa0, . . . ,ak,b0, . . . ,bkq :a j ă b j for 0 ď j ď k, and

a j´1 ď a j and b j´1 ď b j for 1 ď j ď ku Ă R2k (2.1.3)

with the subspace topology. As above, one can extract Kan complexes Intck by taking smooth
simplices. Note that for k “ 0,1 this coincides with (2.1.1) and (2.1.2) above. As before, we
interpret an element pa,bq as an ordered pk ` 1q-tuple of closed intervals I “ I0 ď ¨¨ ¨ ď Ik with left
endpoints a j and right endpoints b j such that I j has non-empty interior. By “ordered”, i.e. I j ď I j1 ,
we mean that the endpoints are ordered, i.e. a j ď a j1 and b j ď b j1 for j ď j1.

Spatial structure of the levels The spatial structure of a level Intck comes from taking smooth
singular simplices of the submanifold of R2k. Thus, an l-simplex consists of smooth maps

|∆ l|e Ñ R, s ÞÑ a jpsq,b jpsq

for j “ 0, . . . ,k such that for every s P |∆ l|e, the following inequalities hold:

aipsq ă bipsq, for i “ 0, . . . ,k

ai´1psq ď aipsq, and

bi´1psq ď bipsq for i “ 1, . . . ,k.

We denote an l-simplex by pI0 ď ¨¨ ¨ ď Ikq Ñ |∆ l|e or pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆ l | and call it a closed
interval bundle with pk ` 1q subintervals.

For a morphism f : rms Ñ rls in the simplex category ∆ , i.e. a (weakly) order-preserving map, let
| f | : |∆ m|e Ñ |∆ l|e be the induced map between standard simplices. Let f ∆ be the map sending an
l-simplex in Intck to the m-simplex in Intck given by precomposing with | f |,

f ∆ :
`

I0psq ď ¨ ¨ ¨ ď Ikpsq
˘

sP|∆ l |e
ÞÝÑ

`

I0p| f |psqq ď . . . ď Ikp| f |psq
˘

sP|∆ m|e
.
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Notation 2.1.4. We denote the spatial face and degeneracy maps of Intck by d∆
j and s∆

j for 0 ď j ď l.

The following Lemma is a straightforward generalization of Lemma 2.1.3.

Lemma 2.1.5. Each level Intck is a contractible Kan complex.

Simplicial structure – the simplicial space Intc‚ By construction, since Intc was strongly Segal,
its nerve is a functor Intc‚ : ∆ op Ñ Space. Let us recall that to a morphism g : rms Ñ rks in ∆ , it
assigns

Intk
g˚

ÝÑ Intm,

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆ l |e
ÞÝÑ pIgp0qpsq ď ¨ ¨ ¨ ď IgpmqpsqqqsP|∆ l |e

.

One could alternatively see this directly by observing that the assignment is clearly functorial and
f ∆ and g˚ commute for all morphisms f ,g in ∆ .

Notation 2.1.6. We denote the simplicial face and degeneracy maps by d j and s j for 0 ď j ď k.

Explicitly, they are given by the following formulas. The jth degeneracy map is given by doubling
the jth interval, and the jth face map is given by deleting the jth interval,

Intk
s j

ÝÑ Intk`1, Intk
d j

ÝÑ Intk´1,

I0 ď ¨¨ ¨ ď Ik ÞÝÑ I0 ď ¨¨ ¨ ď I j ď I j ď ¨¨ ¨ ď Ik, I0 ď ¨¨ ¨ ď Ik ÞÝÑ I0 ď ¨¨ ¨ ď Î j ď ¨¨ ¨ ď Ik.

The complete Segal space Intc‚

Proposition 2.1.7. Intc‚ is a complete Segal space. Moreover, the inclusion ˚ ãÑ Intc‚ given by
degeneracies, where ˚ is seen as a constant complete Segal space, is an equivalence of complete
Segal spaces.

Proof. We have seen in Lemma 2.1.5 that every Intck is contractible. This ensures the Segal condition,
namely that

Intck
»

ÝÑ Intc1
h
ˆ
Intc0

¨ ¨ ¨
h
ˆ
Intc0

Intc1,

completeness, and ensures that the given inclusion is a level-wise equivalence.
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2.1.3 The internal category or complete Segal space Int of ordered closed intervals
in an open one

We now change our interpretation of the spaces (2.1.3): we do not identify them with the spaces of
ordered closed bounded intervals I0 ď ¨¨ ¨ ď Ik anymore, but as ordered intervals which are closed in
pa0,bkq, i.e. we interpret the elements as

Ĩ0 ď ¨¨ ¨ ď Ĩk,

where Ĩ j “ I j X pa0,bkq for 0 ď j ď k. Thus, in the generic case when a j ‰ a0 for 0 ă j ď k and
b j ‰ bk for 0 ď j ă k, then Ĩ0 ď ¨¨ ¨ ď Ĩk are the half-open or closed intervals

pa0,b0s ď ra1,b1s ď ¨ ¨ ¨ ď rak´1,bk´1s ď rak,bkq.

If we view the elements in (2.1.3) in this way, we will denote the internal category (or analogously
the Segal space) by Int.

Note that the identity gives an isomorphism of complete Segal spaces describing the change of
interpretation:

Intck ÝÑ Intk
pI0 ď ¨¨ ¨ ď Ikq ÞÝÑ pĨ0 ď ¨¨ ¨ ď Ĩkq,

where Ĩ j “ I j X pa0,bkq for j “ 0, . . . ,k. Conversely, I j “ clRpĨ jq, the closure of Ĩ j in R.

Definition 2.1.8. Let
Intn‚,...,‚ “ pInt‚qˆn.

We denote an element in Intnk1,...,kn
by

I “ pa,bq “ pIi
0 ď ¨¨ ¨ ď Ii

ki
q1ďiďn.

Lemma 2.1.9. The n-fold simplicial space Intn‚,...,‚ is a complete n-fold Segal space. Moreover, the
inclusion ˚ ãÑ Intn‚,...,‚ given by degeneracies, where ˚ is seen as a constant complete Segal space,
is an equivalence of complete n-fold Segal spaces.

Proof. The Segal condition and completeness follow from the Segal condition and completeness
for Int‚. Since every Intk is contractible by Lemma 2.1.5, pInt‚qˆn satisfies essential constancy,
so Intn is a complete n-fold Segal space. It also ensures that the given inclusion is a level-wise
equivalence.
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2.1.4 The boxing maps

We will need the following maps for convenience later:

Definition 2.1.10. Fix k ě 0. The map of spaces

B : Intk ÝÑ Int0
I “ pI0 ď ¨¨ ¨ ď Ikq Ñ |∆ l|e ÞÝÑ BpIq “ Bpa,bq “ pa0,bkq Ñ |∆ l|e

is called the boxing map.

Its n-fold product gives, for every k1, . . . ,kn ě 0, a map B : Intnk1,...,kn
Ñ Intn0 which sends an l-simplex

to the (family of) smallest open box(es) containing all intervals,

I “ pIi
0 ď ¨¨ ¨ ď Ii

ki
q1ďiďn Ñ |∆ l|e ÞÝÑ BpIq “ Bpa,bq “ pa1

0,b
1
k1

q ˆ ¨ ¨ ¨ ˆ pan
0,b

n
kn

q Ñ |∆ l|e.

We will usually view the total space of BpIq Ñ |∆ l|e as sitting inside Rn ˆ|∆ l|e as
Ť

sP|∆ l |e
BpIpsqqˆ

tsu.

We will also require the following rescaling maps.

Definition 2.1.11. For an element I P Intnk1,...,kn
, let ρpIq : BpIq Ñ p0,1qn be the restriction of the

product of the affine maps R Ñ R sending ai
0 to 0 and bi

k to 1. We call it the box rescaling map.

2.1.5 A variant: closed intervals in p0,1q

One might prefer to restrict to intervals which lie in p0,1q, modifying the definition to

Intp0,1q

k “ tpa,bq “ pa0, . . . ,ak,b0, . . . ,bkq : a j ă b j for 0 ď j ď k,0 “a0 ď a1 ď ¨¨ ¨ ď ak

and b0 ď ¨¨ ¨ ď bk´1 ď bk “ 1u Ă Intk

The simplicial structure now has to be modified to ensure that the outer endpoints always are 0 and
1. This is provided by composition with an affine rescaling map: Let g : rms Ñ rks be a morphism
in ∆ . Then, let

Intp0,1q

k
g˚

ÝÑ Intp0,1q
m ,

pI0 ď ¨¨ ¨ ď Ikq Ñ |∆ l|e ÞÝÑ ρgpIgp0q ď ¨¨ ¨ ď Igpmqq Ñ |∆ l|e,

where the rescaling map ρg “ ρpIgp0q ď ¨¨ ¨ ď Igpmqq is the unique affine transformation R Ñ R
sending agp0q to 0 and bgpmq to 1.
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Lemma 2.1.12. Intp0,1q
‚ is a complete Segal space.

Proof. The only thing which is not completely analogous to Intc is checking that it is a simplicial
space. Given two maps rms

g
Ñ rks

g̃
Ñ rps, and I0 ď ¨¨ ¨ ď Ip, the rescaling map ρg̃˝g and the

composition of the rescaling maps ρg̃ ˝ ρg both send ag̃˝gp0q to 0 and bg̃˝gpmq to 1 and, since affine
transformations R Ñ R are uniquely determined by the image of two points, this implies that they
coincide. Thus, this gives a functor ∆ op Ñ Space.

Note that the degeneracy maps are the same ones, given by repeating an interval. However, the face
maps need to modified: after deleting an end interval we have to rescale the remaining intervals
linearly to p0,1q. Explicitly, for j “ 0, the rescaling map is the affine map ρ0 sending pa1,1q to
p0,1q, ρ0pxq “

x´a1
1´a1

and for j “ k, it is the affine map ρk : p0,bk´1q Ñ p0,1q, ρkpxq “ x
bk´1

. Then,

Intp0,1q

k
d j

ÝÑ Intp0,1q

k´1 ,

I0 ď ¨¨ ¨ ď Ik ÞÝÑ

$

’

&

’

%

I0 ď ¨¨ ¨ ď Î j ď ¨¨ ¨ ď Ik, j ‰ 0,k,
p0, b1´a1

1´a1
s ď ¨ ¨ ¨ ď r

ak´a1
1´a1

,1q, j “ 0,
p0, b0

bk´1
s ď ¨ ¨ ¨ ď r

ak´1
bk´1

,1q, j “ k.

Remark 2.1.13. An advantage of this “reduced” version is that the space of objects is just a point:
for k “ 0, the condition on the endpoints of the intervals becomes a0 “ 0 and b0 “ 1, so the only
element is p0,1q P Int0. In particular, Int0 is discrete.

Remark 2.1.14. Note that the boxing maps applied to Intp0,1q

k are trivial: for I “ I0 ď ¨¨ ¨ ď Ik, we
always have that BpIq “ p0,1q. Moreover, Intp0,1q

k is the preimage of p0,1q under the boxing maps.
Finally, note that the simplicial structure is defined exactly as the composition

Intp0,1q

k
ι

ÝÑ Intk
g˚

ÝÑ Intm
ρ
ÝÑ Intp0,1q

m ,

where ρ : I ÞÑ pρpIqqpIq consists of applying the box rescaling maps. Moreover, since ρ ˝ ι “ id,
the diagram

Intk Intp0,1q

k

Intm Intp0,1q
m

ρ

g˚

ι

g˚

ρ

commutes and shows that the simplicial structure is defined exactly in a way to ensure that we a
natural transformation of simplicial spaces

ρ : Int ÝÑ Intp0,1q,

which is a weak equivalence of complete Segal spaces.
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Section 2.2
The p8,dq-category of n-bordisms

In this section we define an d-fold Segal space PBordpn´dq,V
n in several steps. By applying the Rezk

completion functor we obtain a complete d-fold Segal space, the p8,dq-category of n-bordisms
PBordpn´dq,V

n . Before we start, we consider the following setup.

Setup. Let V be a finite-dimensional vector space. We first define the levels relative to V with
elements being certain submanifolds of the vector space V ˆRd – V ˆ B, where B is an open box,
i.e. a product of d bounded open intervals in R. Then we vary V , i.e. we take the limit over all
finite-dimensional vector spaces lying in R8. The idea behind this process is that by Whitney’s
embedding theorem, every manifold can be embedded in some large enough vector space, so in the
limit, we include representatives of every n-dimensional manifold. We use V ˆ B instead of V ˆRd

as in this case the spatial structure is easier to write down explicitly.

2.2.1 The sets of 0-simplicies of pPBordpn´dq,V
n qk1,...,kd

The intuition behind the following definition should be the following. An element (i.e. 0-simplex)
in the space pPBordpn´dq,V

n q1,...,1 should be an d-fold bordism, i.e. a manifold for which there are d
“time” directions singled out and whose boundary is decomposed into an incoming and an outgoing
part in each of these time directions. This is a picture of a simple example for d “ 2.

time 1

time 2

An element in the space pPBordpn´dq,V
n qk1,...,kd should be an d-fold bordism, which is the composition

of k1 bordisms in the first “time” direction, k2 bordisms in the second “time” direction, and so on.
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This is a picture of an example for n “ 2, d “ 2 and k1 “ k2 “ 2.

The pictures both depict the bordisms as embedded into R times the two time directions. We would
like to point out that the “time” directions have a preferred ordering, as we will discuss in more
detail later.

More generally, we will choose the bordisms to be equipped with an embedding into some finite
dimensional real vector space V times d “time” directions, which we single out to track where the
bordism is allowed to be cut into the individual composed bordisms. Furthermore, to keep track of
the “cuts”, we need to remember the data of the grid in the “time” directions.

In practice, we will keep track of little intervals surrounding the grid instead of the grid itself. This
should be thought of as remembering little collars around the cuts rather than the cuts themselves.
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We will explain how to recover the cuts and how to interpret the following definition in the example
and remark right after the definition.

Notation 2.2.1. For S Ď t1, . . . ,du, denote the projection from Rd onto the coordinates indexed by
S by πS : Rd Ñ RS.

We will now define the sets of 0-simplices of pPBordpn´dq,V
n qk1,...,kd and denote them by pPBordpn´dq,V

n qk1,...,kd

to avoid adding an extra index.

Definition 2.2.2. Let V be a finite-dimensional R-vector space, which we identify with some Rr.
For every d-tuple k1, . . . ,kd ě 0, let pPBordpn´dq,V

n qk1,...,kd be the collection of tuples

pM, I “ pIi
0 ď ¨¨ ¨ ď Ii

ki
q1ďiďdq,

satisfying the following conditions:

(1) For 1 ď i ď d,
pIi

0 ď ¨¨ ¨ ď Ii
ki

q P Intki .

(2) M is a closed and bounded n-dimensional submanifold of V ˆ BpIq and the composition
π : M ãÑ V ˆ BpIq ↠ BpIq is a proper map.[b]

(3) For every S Ď t1, . . . ,du, let pS : M π
ÝÑ BpIq

πS
ÝÑ RS be the composition of π with the projection

πS onto the S-coordinates. Then for every 1 ď i ď d and 0 ď ji ď ki, at every x P p´1
tiu pIi

jiq, the
map pti,...,du is submersive.

Figure 2.1: An element of
`

PBord1,V
2

˘

2

[b]Recall the boxing map from Section 2.1.4.
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Figure 2.2: An element of
`

PBord1,V
2

˘

3

Remark 2.2.3. For k1, . . . ,kd ě 0, one should think of an element in pPBordpn´dq,V
n qk1,...,kd as a

collection of k1 ¨ ¨ ¨kd composed bordisms, with ki composed bordisms with collars in the ith
direction. They can be understood as follows.

• Condition (3) in particular implies that for every 1 ď i ď d, at every x P p´1
tiu pIi

jq, the map

ptiu is submersive. So if we choose t i
j P Ii

j, it is a regular value of ptiu, and therefore p´1
tiu pt i

jq

is an pn ´ 1q-dimensional manifold. The embedded manifold M should be thought of as
a composition of n-bordisms and p´1

tiu pt i
jq is one of the pn ´ 1q-bordisms (or a composition

therof) in the composition.

t i
j

• For any td´1
j P Id´1

j and td´1
l P Id´1

l , there is an inclusion of the preimages

p´1
td´1,du

´

ptd´1
j , td

l q

¯

Ă p´1
td´1u

pId´1
j q,

and by condition (3) the map ptd´1,du is submersive there. Therefore p´1
td´1,du

´

ptd´1
j , td

l q

¯

is
an pn ´ 2q-dimensional manifold, which should be thought of as one of the pn ´ 2q-bordisms
which are connected by the composition of n-bordisms M. Moreover, again since ptd´1,du is
submersive everywhere in p´1

td´1u
pId´1

j q, a variant of Ehresmann’s fibration theorem shows

56



Section 2.2. The p8,dq-category of n-bordisms 57

that the preimage p´1
td´1u

ptd´1
j q is a trivial fibration and thus a trivial pn ´ 1q-bordism between

the pn ´ 2q-bordisms it connects.

Rtd´1u

Rtdu

td´1
j

• Similarly, for ptk
jk , . . . , t

d
jd q P Ik

jk ˆ ¨¨ ¨ ˆ Id
jd , the preimage

p´1
tk,...,du

´

ptk
jk , . . . , t

d
jd q

¯

is a pk ´ 1q-dimensional manifold, which should be thought of as one of the pk ´ 1q-bordisms
which is connected by the composition of n-bordisms M.

2.2.2 Construction of the topological space pPBord
pn´dq,V
n qk

Definition 2.2.4. Let ΨpV ˆ p0,1qdq be the set of subsets M Ď V ˆ p0,1qd which are smooth,
bounded n-dimensional submanifolds without boundary, and such that M is closed as a subset.

Step 1. We first define the compactly supported topology on ΨpV ˆ p0,1qdq. We will write
ΨpV ˆ p0,1qdqcs for ΨpV ˆ p0,1qdq equipped with this topology. In fact, ΨpV ˆ p0,1qdqcs will be
an infinite-dimensional smooth manifold, in which a neighbourhood of M P ΨpV ˆ p0,1qdqcs is
homeomorphic to a neighbourhood of the zero-section in the vector space ΓcpNMq consisting of
compactly supported sections of the normal bundle NM of M Ď V ˆ p0,1qd .

Construction 2.2.5. Let C8
c pMq denote the set of compactly supported smooth functions on M.

Given a function ε : M Ñ p0,8q and finitely many vector fields X “ pX1,X2, . . . ,Xrq on M, let
Bpε,Xq denote the set of all functions such that |pX1X2 . . .Xr f qpxq| ă εpxq for all x. Declare the
family of sets of the form f ` Bpε,Xq a subbasis for the topology on C8

c pMq, as f ranges over
C8

c pMq, ε over functions M Ñ p0,8q, and X over r-tuples of vector fields, and r over non-negative
integers. This makes C8

c pMq into a locally convex vector space.

We define the normal bundle NM to be the subbundle of εn which is the orthogonal complement
to the tangent bundle T M Ď εn. This identifies ΓcpNMq with a linear subspace of C8

c pMq‘n. We

57



Section 2.2. The p8,dq-category of n-bordisms 58

topologise it as a subspace.

By the tubular neighbourhood theorem, the standard map NM Ñ Rd restricts to an embedding of
a neighbourhood of the zero section. Associating to a section s its image spMq gives a partially
defined injective map

ΓcpNMq
cM
99KΨpV ˆ p0,1qdqcs

whose domain is an open set. Topologise ΨpV ˆ p0,1qdqcs by declaring the maps cM to be
homeomorphisms onto open sets. This makes ΨpV ˆp0,1qdqcs into an infinite dimensional manifold,
modelled on the topological vector space ΓcpNMq.

Step 2. For each compact set K Ď V ˆ p0,1qd , we define a topology on ΨpV ˆ p0,1qdq, called the
K-topology. We will write ΨpV ˆ p0,1qdqK for ΨpV ˆ p0,1qdq equipped with this topology.

Construction 2.2.6. Let
ΨpUqcs πK

ÝÑ ΨpK Ď Uq

be the quotient map that identifies elements of ΨpV ˆ p0,1qdqcs if they agree on a neighbourhood of
K. The image of a manifold M P ΨpV ˆ p0,1qdqcs is the germ of M near K, and we shall also write
πKpMq “ M|K . Give ΨpK Ď V ˆ p0,1qdq the quotient topology.

Now, let ΨpV ˆ p0,1qdqK be the topological space with the same underlying set as ΨpV ˆ p0,1qdqcs,
and with the coarsest topology making πK : ΨpV ˆ p0,1qdqK Ñ ΨpK Ď V ˆ p0,1qdq continuous. It
is a formal consequence of the universal properties of initial and quotient topologies that the identity
map ΨpV ˆ p0,1qdqL Ñ ΨpV ˆ p0,1qdqK is continuous when K Ď L are two compact sets. That is,
the L-topology is finer than the K-topology.

Step 3. Finally, let ΨpV ˆ p0,1qdq have the coarsest topology finer than all the K-topologies. In
other words, ΨpV ˆ p0,1qdq is the inverse limit of ΨpV ˆ p0,1qdqK over larger and larger compact
sets.

Now, we identify the topology on ΨpV ˆ p0,1qdq with the quotient

SubpV ˆ p0,1qdq
»

ÐÝ
ğ

rMs

EmbpM,V ˆ p0,1qdq{DiffpMq,

where the coproduct is taken over diffeomorphism classes of n-manifolds. It is given by defining the
neighborhood basis at M to be

tN Ă V ˆ p0,1qd : N X K “ jpMq X K, j P Wu,

where K Ă V ˆ p0,1qd is compact and W Ď EmbpM,V ˆ p0,1qdq is a neighborhood of the inclusion
M ãÑ V ˆ p0,1qd in the Whitney C8-topology. Thus we obtain a topology on

SubpV ˆ p0,1qdq ˆIntdk1,...,kd
,
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where we view Intdk1,...,kd
as a (topological) subspace of R2k as in 2.1.1.

For an element I P Intdk1,...,kd
, recall from Definition 2.1.11 the box rescaling map ρpIq : BpIq Ñ

p0,1qd . Then we identify an element pM, Iq P pPBord
pn´dq,V
n qk1,...,kd whose underlying submanifold

is the image of an embedding ι : M ãÑ V ˆ BpIq with the element
`

rρpIq ˝ ιs,ρpIq
˘

in the above
space. This identification gives an inclusion

pPBord
pn´dq,V
n qk1,...,kd Ď SubpV ˆ p0,1qdq ˆIntdk1,...,kd

,

which we use to topologize the left-hand side.

The Kan complex pPBordpn´dq,V
n qk1,...,kd

To model the levels of the bordism category as spaces, i.e. as Kan complexes, we can start with
the above version as a topological space and take singular simplices of this topological space.
However, smooth maps from a smooth manifold X to ΨpV ˆ p0,1qdq are easier to handle. By
Lemma 2.18 [GRW10], every continuous map from a smooth manifold, in particular from |∆ l|e, to
pPBord

pn´dq,V
n qk1,...,kd can be perturbed to a smooth one, so the homotopy type when considering

smooth singular simplices does not change.

We will first give a very explicit description of the Kan complex pPBordpn´dq,V
n qk1,...,kd .

Definition 2.2.7. An l-simplex of pPBordpn´dq,V
n qk1,...,kd consists of tuples

pM, Ipsq “ pIi
0psq ď ¨ ¨ ¨ ď Ii

ki
psqqsP|∆ l |e

such that

(1) I “ pIi
0 ď ¨¨ ¨ ď Ii

ki
q1ďiďd Ñ |∆ l|e is an l-simplex in Intdk1,...,kd

,

(2) M is a closed and bounded pn ` lq-dimensional submanifold of V ˆ BpIpsqqsP|∆ l |e
Ă V ˆRd ˆ

|∆ l|e such that[c]

(a) the composition π : M ãÑ V ˆ BpIpsqqsP|∆ l |e
↠ BpIpsqqsP|∆ l |e

of the inclusion with the
projection is proper,

(b) its composition with the projection onto |∆ l|e is a submersion M Ñ |∆ l|e which is trivial
outside |∆ l| Ă |∆ l|e, and

(3) for every S Ď t1, . . . ,du, let pS : M π
ÝÑ BpIpsqqsP|∆ l |e

Ă Rd ˆ |∆ l|e
πS
ÝÑ RS ˆ |∆ l|e be the

composition of π with the projection πS onto the S-coordinates. Then for every 1 ď i ď d and
0 ď ji ď ki, at every x P p´1

tiu p
Ť

sP|∆ l |e
Ii

jipsq ˆ tsuq, the map pti,...,du is submersive.

[c]Recall that we view the total space of BpIq Ñ |∆ l |e as sitting inside Rd ˆ |∆ l |e as
Ť

sP|∆ l |e
BpIpsqq ˆ tsu.
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From the Definition of smooth map in [GRW10, Definition 2.16, Lemma 2.17] we immediately get:

Lemma 2.2.8. An l-simplex of pPBordpn´dq,V
n qk1,...,kd is exactly a smooth l-simplex of pPBord

pn´dq,V
n qk1,...,kd .

Remark 2.2.9. Note that for l “ 0 we recover Definition 2.2.2. Moreover, for every s P |∆ l|e the
fiber Ms of M Ñ |∆ l|e determines an element in pPBordpn´dq,V

n qk1,...,kd

pMsq “ pMs Ă V ˆ BpIpsqq, Ipsqq.

We will use the notation πs : Ms Ñ BpIpsqq for the composition of the embedding and the projection.

Remark 2.2.10. The conditions ((2)a), ((2)b), and ((3)) imply that M Ñ |∆ l|e is a smooth fiber
bundle, and, since |∆ l|e is contractible, even a trivial fiber bundle. The proof is a more elaborate
version of the argument after Definition 2.6 in [GTMW09].

We now use the simplicial maps of the space Intdk1,...,kd
to explain those of pPBordpn´dq,V

n qk1,...,kd .

Definition 2.2.11. Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆ . Then
let | f | : |∆ m|e Ñ |∆ l|e be the induced map between standard simplices.

Let f ∆ be the map sending an l-simplex in pPBordpn´dq,V
n qk1,...,kd to the m-simplex which consists of

(1) for 1 ď i ď d, the m-simplex in Intki obtained by applying f ∆ ,

f ∆

´

pIi
0psq ď ¨ ¨ ¨ ď Ii

ki
psqqsP|∆ l |e

¯

“
`

Ii
0p| f |psqq ď . . . ď Ii

ki
p| f |psq

˘˘

sP|∆ m|e
,

(2) The pn ` mq-dimensional submanifold f ∆ M Ď V ˆ BpIpsqqsP|∆ m|e obtained by the pullback of
M Ñ |∆ l|e along | f |. Note that its fiber at s P |∆ m|e is p f ∆ Mqs “ M| f |psq and

f ∆ M “
ď

sP|∆ m|e

M| f |psq ˆ tsu.

The above assignment is indeed well-defined since the underlying assignment for the underlying
intervals is well-defined and since the map | f | is a submersion, the pullback of M Ñ |∆ l|e along | f | is
also a submersion. Moreover, the assignment is functorial, since pullback commutes contravariantly
with composition, and thus pPBordpn´dq,V

n qk1,...,kd is a simplicial set.

Proposition 2.2.12. pPBordpn´dq,V
n qk1,...,kd is the smooth singular space of pPBord

pn´dq,V
n qk1,...,kd .

In particular, it is a space.

Proof. By definition the simplicial maps f ∆ are induced precisely by the maps | f | : |∆ m|e Ñ

|∆ l|e.
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Notation 2.2.13. We denote the spatial face and degeneracy maps of pPBordpn´dq,V
n qk1,...,kd by d∆

j

and s∆
j for 0 ď j ď l.

Example 2.2.14. We now construct an example of a path. It shows that cutting off part of the collar
of a bordism yields an element which is connected to the original one by a path.

Let pMq “ pM, I “ pIi
0 ď ¨¨ ¨ ď Ii

ki
qi“1,...,dq P pPBordpn´dq,V

n qk1,...,kd and fix 1 ď i ď d. We show that

cutting off a short enough piece in the ith direction at an end of an element of pPBordpn´dq,V
n qk1,...,kd

leads to an element which is connected by a path to the original one. Fix 1 ď i ď d and let ε ă bi
0 ´ai

0.

Choose a smooth, increasing, bijective function r0,1s Ñ r0,εs,s ÞÑ εpsq with vanishing derivative
at the endpoints.

For 0 ď j ď ki and s P r0,1s Ă |∆ 1|e let

Ii
jpsq “ pai

0 ` εpsq,bi
ki

q X Ii
j,

and then BpIpsqq “ pai
0 ` εpsq,bi

ki
q Ă BpIq. For s ď 0 and s ě 1 let the family be constant. Then let

Mpεq be the preimage of the subset
Ť

sP|∆ 1|e
BpIpsqq ˆ tsu Ď BpIq ˆ |∆ 1|e of M ˆ |∆ 1|e Ñ BpIq ˆ

|∆ 1|e, i.e. the submanifold

Mpεq M ˆ |∆ 1|e

Ť

sP|∆ 1|e
BpIpsqq ˆ tsu BpIq ˆ |∆ 1|e

Then pMpεq, Ipsqq is a 1-simplex in pPBordpn´dq,V
n qk1,...,kd with fibers Mpεqs “ p´1

tiu

`

pai
0 ` εpsq,bi

kq
˘

.

Remark 2.2.15. In the above example we constructed a path from an element in pPBordpn´dq,V
n qk1,...,kd

to its cutoff, where we cut off the preimage of p´1
i ppai

0,εsq for suitably small ε . Note that the same
argument holds for cutting off the preimage of p´1

i prbi
ki

´ δ ,bi
ki

qq for suitably small δ . Moreover,

we can iterate the process and cut off εi,δi strips in all i directions. Choosing εi “
bi

0´ai
0

2 ,δi “
bi

ki
´ai

ki
2

yields a path to its cutoff with underlying submanifold

cutpMq “ π
´1

´

d
ź

i“1

p
ai

0 ` bi
0

2
,
ai

ki
` bi

ki

2
q

¯

.
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2.2.3 The n-fold simplicial space pPBordpn´dq,V
n q‚,¨¨¨ ,‚

We make the collection of spaces pPBordpn´dq,V
n q‚,...,‚ into an d-fold simplicial space by lifting the

simplicial structure of Intˆd
‚,...,‚. We first need to extend the assignment

prk1s, . . . , rkdsq ÞÝÑ pPBordpn´dq,V
n qk1,...,kd

to a functor from p∆ opqd .

Definition 2.2.16. For every 1 ď i ď d, let gi : rmis Ñ rkis be a morphism in ∆ , and denote by
g “ pgiqi their product in ∆ d . Then

pPBordpn´dq,V
n qk1,...,kd

g˚

ÝÑ pPBordpn´dq,V
n qm1,...,md .

applies g˚
i to the ith tuple of intervals and perhaps cuts the manifold. Explicitly, on l-simplices, g˚

sends an element

pM Ă V ˆ BpIpsqqsP|∆ l |e
, Ipsq “ pIi

0psq ď . . . ď Ii
ki

psqqd
i“1q

to
`

g˚M “ π
´1`

Bpg˚IpsqqsP|∆ l |e
q
˘

Ă V ˆ BpIpsqqsP|∆ l |e
,g˚pIqpsq “ pIi

gp0qpsq ď . . . ď Ii
gpmiq

psqqd
i“1q

˘

,

where π : M Ă V ˆ BpIpsqqsP|∆ l |e
↠ BpIpsqqsP|∆ l |e

. Note that pg˚Mqs “ g˚Ms.

Note that as the manifold g˚M is the preimage of the new box, we just cut off the part of the manifold
outside the new box. This is functorial, as it is functorial on the intervals, and, if g̃i : rkis Ñ rk̃is and
g̃ “ pg̃iqi, the following diagram commutes by construction:

M g˚M g̃˚g˚M

BpIpsqqsP|∆ l |e
Bpg˚pIpsqqsP|∆ l |e

Bpg̃˚g˚pIpsqqsP|∆ l |e

π

Ě

π

Ě

π

Ě Ě

Notation 2.2.17. We denote the (simplicial) face and degeneracy maps by di
j : pPBordpn´dq,V

n qk1,...,kd Ñ

pPBordpn´dq,V
n qk1,...,ki´1,...,kd and si

j : pPBordpn´dq,V
n qk1,...,kd Ñ pPBordpn´dq,V

n qk1,...,ki`1,...,kd for 0 ď

j ď ki.

Notation 2.2.18. Recall from remark 2.2.3 that for k1, . . . ,kd ě 0, one should think a 0-simplex
in pPBordpn´dq,V

n qk1,...,kd as a collection of k1 ¨ ¨ ¨kd composed bordisms with ki composed bordisms
with collars in the ith direction. These composed collared bordisms are the images under the maps

Dp j1, . . . , jdq : pPBordpn´dq,V
n qk1,...,kd ÝÑ pPBordpn´dq,V

n q1,...,1
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for p1 ď ji ď kiq1ďiďd arising as compositions of inert face maps, i.e. Dp j1, . . . , jdq is the map
determined by the maps

dp jiq : r1s Ñ rkis, p0 ă 1q ÞÑ p ji ´ 1 ă jiq

in the category ∆ . This should be thought of as sending an element to the p j1, . . . , jdq-th collared
bordism in the composition. Moreover, we will later use the notation

Dip jiq : pPBordpn´dq,V
n qk1,...,kd ÝÑ pPBordpn´dq,V

n qk1,...,1,...,kd

for the maps induced by just dp jiq. By abuse of notation, we will denote the submanifold dp jiq˚M
by Dip jiqpMq.

Proposition 2.2.19. The spatial and simplicial structures of pPBordpn´dq,V
n q‚,...,‚ are compatible,

i.e. for f : rls Ñ rps, gi : rmis Ñ rkis for 1 ď i ď d, the induced maps

f ∆ and g˚

commute. We thus obtain an d-fold simplicial space pPBordpn´dq,V
n q‚,¨¨¨ ,‚.

Proof. Since Intd is a simplicial space, it is enough to show that the maps commute on the manifold
part, i.e.

g˚ f ∆ M “ f ∆ g˚M.

This follows from the commuting of the following diagram, in which all sides arise from taking
preimages. The preimages are taken over Bpg˚IpsqqsP|∆ m|e Ă BpIpsqqsP|∆ m|e and | f | : |∆ m|e Ñ |∆ l|e,
respectively, which affect different components of V ˆ

Ť

sP|∆ m|e
pBpIpsqq ˆ tsuq Ă V ˆRd ˆ |∆ m|e,

so they commute.

V ˆ BpIpsqqsP|∆ m|e V ˆ Bpg˚IpsqqsP|∆ m|e

f ∆ M g˚ f ∆ M “ f ∆ g˚M

V ˆ BpIpsqqsP|∆ l |e
V ˆ Bpg˚IpsqqsP|∆ l |e

M g˚M

idˆ| f | idˆ| f |
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2.2.4 The complete n-fold Segal space Bordn

We will now prove that PBordpn´dq,V
n leads to a pre-p8,dq-category, i.e. a complete d-fold Segal

space of bordisms.

Proposition 2.2.20. pPBordpn´dq,V
n q‚,...,‚ is an d-fold Segal space.

Proof. We need to prove that the Segal condition and globularity are satisfied.

The Segal condition is satisfied. Fix fixed k1, . . . ,kd ě 0. We need to show that for every 1 ď i ď d,
and ki “ m ` l, the Segal map

γm,l : pPBordpn´dq,V
n qk1,...,ki,...,kn ÝÑ pPBordpn´dq,V

n qk1,...,m,...,kd

h
ˆ

pPBordpn´dq,V
n qk1 ,...,0,...,kd

pPBordpn´dq,V
n qk1,...,l,...,kd

is a weak equivalence. From now on we will often omit writing out the indices for α ‰ i for clarity.

Since every level set pPBordpn´dq,V
n qk1,...,kd is a Kan complex by proposition 2.2.12, i.e. fibrant, the

homotopy fiber product on the right hand side can be chosen to be the space of triples consisting of
two points and a path between their target and source, respectively.

Note that an element in this space is given by a triple consisting of

pM, Iq “ pι : M Ă V ˆ BpIq, I “

´

Ii
0 ď ¨¨ ¨ ď Ii

m, I
j

0 ď ¨¨ ¨ ď I j
k j

¯

1ď jďd, j‰i
q,

pN,Jq “ pκ : N Ă V ˆ BpJq,J “

´

Ji
0 ď ¨¨ ¨ ď Ji

l ,J
j
0 ď ¨¨ ¨ ď J j

k j

¯

1ď jďd, j‰i
q,

together with a path h from the target DipmqpM, Iq “

´

DipmqpMq, Ii
m,pI j

0 ď ¨¨ ¨ ď I j
k j

q1ď jďd, j‰i

¯

of

pM, Iq in the ith direction to the source Dip1qpN,Jq “

´

Dip1qpNq,Ji
0,pJ j

0 ď ¨¨ ¨ ď J j
k j

q1ď jďd, j‰i

¯

of

pN,Jq in the ith direction (using Notation 2.2.18).

The Segal map γm,l factors as a composition

pPBordpn´dq,V
n qki pPBordpn´dq,V

n qm
h
ˆ

pPBordpn´dq,V
n q0

pPBordpn´dq,V
n ql

pPBordpn´dq,V
n qm,l Pm,l

ki
,

γm,l

(2.2.1)

as follows: Informally, the lower right hand corner is the subspace of triples for which, for the
directions besides the ith, the tuples of intervals agree and the path of intervals is constant. The
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lower left hand corner is the subspace thereof, for which in addition in the ith direction Ii
m “ Ji

0, and
along the path this interval stays constant. We will define these spaces below. Our strategy to prove
that γm,l is a weak equivalence is to show that all three maps are weak equivalences. Here the left
vertical map is the main step of the proof – this is where “composing” the bordisms happens, as
we will see below. That the bottom and right vertical map are weak equivalences follows from a
rescaling procedure. Let us first define the two spaces in question.

For the lower right hand corner, for 1 ď j ď d and j ‰ i, consider the jth forgetful map

PBordpn´dq,V
n ÝÑ Int, pM, Iq ÞÝÑ I j.

The canonical maps from the pullback to the homotopy pullback Int‚ – Int‚ ˆ
Int‚

Int‚ Ñ Int‚
h
ˆ

Int‚
Int‚

(which is a weak equivalence since a deformation retract is straightforward to write down and
rescales the second tuple of intervals) for varying j induce a (strict) pullback square

pPBordpn´dq,V
n q‚,...,‚,m,‚,...,‚

h
ˆ

pPBordpn´dq,V
n q‚,...,‚,0,‚,...,‚

pPBordpn´dq,V
n q‚,...,‚,l,‚,...,‚ Intˆpn´1q

‚,...,‚

h
ˆ

Intˆpn´1q
‚,...,‚

Intˆpn´1q
‚,...,‚

Pm,l
‚,...,‚ Intˆpn´1q

‚,...,‚ .

»

The strict pullback of this diagram consists of exactly those pairs whose jth tuples of intervals agree
for every j ‰ i, and is constant along the path (but the embedded manifold can still vary).[d]

For the lower left hand corner, consider the canonical map Intm ˆ
Int0

Intl Ñ Intm
h
ˆ
Int0

Intl (which is a

weak equivalence since both sides are contractible). Now form the (strict) pullback

Pm,l
‚,...,‚ Intm

h
ˆ
Int0

Intl

pPBordpn´dq,V
n q

m,l
‚,...,‚ Intm ˆ

Int0
Intl.

»

It consists of exactly those pairs whose jth tuples of intervals agree for every j ‰ i and is constant
along the path (but the embedded manifold can still vary), and, in addition, in the ith direction, the
last interval of the first element is the first interval of the second element.[e]

[d]Note that since the right vertical map is a weak equivalence, if the diagram were also a homotopy pullback diagram, we
would immediately see that the left vertical map is a weak equivalence as well. However, neither map in the diagram is
a fibration (or not even a “sharp map” à la Rezk [Rez98]), so we need to find a different strategy.

[e]Again, the right vertical map is a weak equivalence, and it would be more convenient to take the homotopy pullback.
However, the same problem appears as in the previous situation.
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The left vertical map in (2.2.1) is a weak equivalence: We first fix once and for all a “smoothed
diagonal” D Ă r0,1s2: it is the graph of a map ς : r0,1s Ñ r0,1s, which has vanishing derivative in
r0, 1

3 s and r 2
3 ,1s (we could also chose fixed shorter intervals) and is bijective with smooth inverse in

r 1
3 ,

2
3 s, for example

1
3

2
3

D

We will use this to define a deformation retract of γm,l which we suggestively call glue. The
homotopy exhibiting the deformation retract will use the following two modified functions for
τ P r0,1s. Let

ς
s
τ “ τ ¨ ς and ς

t
τ “ 1 ` τ ¨ pς ´ 1q.

Then for τ “ 1 we have that ς “ ς s
1 “ ς t

1, and for τ “ 0 we have ς s
0 “ 0 and ς t

0 “ 1. Moreover, for
every τ , both ς s

τ and ς t
τ are smooth and bijective onto its image. These give “flatter” diagonals Ds,τ

and Dt,τ .

1
3

2
3

Ds,τ

Dt,τ

τ “ 1
3

1
3

2
3

Ds,τ

Dt,τ

τ “ 2
3

Recall from above that an element in pPBordpn´dq,V
n q

m,l
‚,...,‚ is given by a pair pM, Iq and pN,Jq and a

path h from the target of the former to the source of the latter, along which the interval is constant.
We will use this path h to glue the embedded manifolds M and N. A similar argument works for
l-simplices in pPBordpn´dq,V

n q
m,l
‚,...,‚.

The 1-simplex h by definition is a submanifold P of[f] V ˆ pc,bq ˆ |∆ 1|e such that the composition
with the projection πtiu : P Ñ pc,bqˆ|∆ 1|e is a submersion. We rescale the fixed smoothed diagonal
D linearly to obtain a smooth diagonal Dc,b in pc,bq ˆ |∆ 1|e.

[f]Actually, of V ˆ pc,bq ˆ BppI j
0 ď ¨¨ ¨ ď I j

k j
q1ď jďd, j‰iq ˆ |∆ 1|e.
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Consider the preimage Pdiag of πtiu of Dc,b. Since the projection πtiu : P Ñ pc,bq ˆ |∆ 1|e is
submersive, a Morse lemma style argument shows that this preimage Pdiag is diffeomorphic to
both DpmqpMq and Dp1qpNq. Thus we glue the manifolds M and N over Pdiag to obtain M YPdiag N.
We realize it as a submanifold of V ˆRˆ pa,dq by using

M – M ˆ t0u Ă V ˆ t0u ˆ pa,bq Ă V ˆRˆ pa,dq

N – N ˆ t1u Ă V ˆ t1u ˆ pc,dq Ă V ˆRˆ pa,dq

and, using the coordinate in |∆ 1|e – R,

Pdiag Ă V ˆRˆ pc,bq Ă V ˆRˆ pa,dq

. However, note that the extra copy of R introduced above is not necessary: let

D̄ “ pt0u ˆ pa,csq Y Dc,b Y pt1u ˆ rb,dqq Ă Rˆ pa,dq.

Then the projection onto the second coordinate induces a diffeomorphism D̄ – pa,dq. Thus,
composing the embedding of the submanifold into V ˆRˆpa,dq with the projection onto V ˆpa,dq

still is an embedding:
M YPdiag N ãÑ V ˆ pa,dq.

The same construction works for l-simplices: the same argument goes through with pM, Iq and
pN,Jq now being l-simplices, and thus submanifolds of V ˆ pa,bq ˆ |∆ l|e and V ˆ pc,dq ˆ |∆ l|e,
respectively, and P a submanifold of V ˆ pc,bq ˆ |∆ l`1|e. Moreover, since the shape D was chosen
once and for all, this construction commutes with the spatial structure and indeed gives a map of
spaces

glue : pPBordpn´dq,V
n qm,l

‚,...,‚ ÝÑ pPBordpn´dq,V
n q‚,...,‚,ki,‚,...,‚.

We claim that this is a deformation retract of γm,l: Indeed, glue ˝ γm,l is the identity, since the
path between the source and target in the image of γm,l is constant. As for the other composition
γm,l ˝ glue, this sends a pair of elements (or l-simplices) pM, Iq and pN,Jq together with a path h
from the target to the source to a pair pM̃, Iq and pÑ,Jq which is not the original one (In fact, the
latter pair has a constant path h̃). However, there is a homotopy from γm,l ˝ glue to the identity as
follows: for τ P r0,1s, send pM, Iq,pN,Jq,h to the the following pair: modify the above construction
by using Ds,τ and Dt,τ instead to obtain Ps,τ

diag and Pt,τ
diag. Now one can glue M with Ps,τ

diag and N with
Pt,τ

diag and embed each as above to obtain pMτ , Iq and pNτ ,Jq. A path hτ between their target and
source is given by the restriction of P to (i.e. the preimage of) the part between Ds,τ and Dt,τ . For
τ “ 0 this is the identity map, and for τ “ 1, this is exactly γm,l ˝ glue.

“Rescaling” – the bottom and right vertical maps in (2.2.1) are weak equivalences: Both maps are
part of a deformation retraction. Let us describe the right vertical map first.
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The idea of “rescaling” is illustrated in the following picture for n “ 2, i “ 1, l “ m “ 1, and k2 “ 2.
Note that we just depict the cutting lines, not the intervals around them. The rescaling is performed
on the right hand piece.

ù

The deformation retract is given as follows: we observed above that the canonical map

Int‚ – Int‚ ˆ
Int‚

Int‚ ÝÑ Int‚
h
ˆ

Int‚
Int‚

level-wise has a deformation retraction. We will lift this to the desired deformation retraction.

An element (or l-simplex) in the right hand side is given by a triple pI,J,hq, where h is a 1-simplex
(or pl ` 1q-simplex) from I to J, which we denote by I Ñ |∆ 1|e. The later determines a family of
diffeomorphisms BpJq Ñ BpIpsqq and we send a triple

`

pM, Iq,pN,Jq,h
˘

to a triple
`

pM, Iq,pNs,Jsq,hs
˘

,
where pNs,Jsq is given by the composition

N Ă V ˆ BpJq Ñ V ˆ BpIpsqq.

We need the family of diffeomorphisms to have the following property: if for every s P rs,1s, the
cardinality |I jpsq X I j`1psq| is 0 or 1, then b jp1q ÞÑ b jpsq and a j`1p1q ÞÑ a j`1psq. Such maps are
easily defined in a piece-wise linear way.

As for the horizontal map, the rescaling in the ith direction, let BpIiq “ pa,bq and ai
j and bi

j the
left and right endpoints of Ii

j; and BpJiq “ pc,dq and ci
j and di

j the left and right endpoints of Ji
j.

Similarly to above, by rescaling pN,Jq, we can assume that we have rescaled the embeddings and
intervals such that Ii

m “ Ji
0 “ pai

m,bq “ pc,di
0q, and along the path this interval stays constant. This

assumption implies the the intervals can be “glued” (or rather, concatenated) to obtain an element in
Intki .

dai
0 “ a bi

0
. . .

ai
m “ c bi

m “ b
. . .

ci
l

Similarly to above, this can be implemented using a deformation retraction of Intm ˆ
Int0

Intl Ñ

Intm
h
ˆ
Int0

Intl , which is lifted to one of the inclusion.
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For every i and every k1, . . . ,ki´1, the pd ´ iq-fold Segal space pPBordpn´dq,V
n qk1,...,ki´1,0,‚,¨¨¨ ,‚ is

essentially constant. We show that the degeneracy inclusion map

pPBordpn´dq,V
n qk1,...,ki´1,0,0,...,0 ãÝÑ pPBordpn´dq,V

n qk1,...,ki´1,0,ki`1,...,kn

admits a deformation retraction and thus is a weak equivalence.

Consider the assignment sending a pair consisting of t P r0,1s and an l-simplex
´

M Ă V ˆ BpIpsqq,
`

pIβ psqq1ďβăi,pai
0psq,bi

0psqq,pIαpsqqiăαďd
˘

sP|∆ l |e

¯

,

in pPBordpn´dq,V
n qk1,...,ki´1,0,ki`1,...,kn to

´

M Ă V ˆ BpIpsqq,
`

pIβ psqq1ďβăi,pai
0psq,bi

0psqq,pIαps, tqqiăαďd
˘

ps,tqP|∆ l |eˆr0,1s

¯

,

where for α ą i and every 0 ď j ď kα ,

aα
j ps, tq “ p1 ´ εptqqaα

j psq ` εptqaα
0 psq,

bα
j ps, tq “ p1 ´ εptqqbα

j psq ` εptqbα
kα

psq

for a smooth, increasing, bijective ε : r0,1s Ñ r0,1s with vanishing derivative at the endpoints. This
is a homotopy H : r0,1s ˆ pPBordV

n qk1,...,ki´1,0,ki`1,...,kn Ñ pPBordV
n qk1,...,ki´1,0,ki`1,...,kn exhibiting the

deformation retract[g]. Note that BpIps, tqq “ BpIpsqq for every t P r0,1s. Moreover, for t “ 0 we have
that Iα

j ps,0q “ Iα
j psq and the l-simplex is sent to itself. For t “ 1 we have Iα

j ps,1q “ paα
0 psq,bα

kα
psqq,

so the image lies in pPBordV
n qk1,...,ki´1,0,0,...,0.

It suffices to check that for every t P r0,1s the image indeed is an l-simplex in pPBordV
n qk1,...,ki´1,0,ki`1,...,kn .

Since pM, Ipsqq P pPBordV
n qk1,...,ki´1,0,ki`1,...,kn , this reduces to checking

For every i ă α ď d and 0 ď j ď kα , at every x P p´1
tαu

pIα
j ps, tqsP|∆ l |e

q, the map ptα,...,nu

is submersive.

Since in the ith direction we only have one interval, we have that p´1
tiu ppai

0psq,bi
0psqqsP|∆ l |e

q “

M, so in particular, p´1
tiu ppai

0psq,bi
0psqqsP|∆ l |e

q Ą p´1
tαu

pIα
j ps, tqsP|∆ l |e

q. Therefore, condition ((3))

in 2.2.7 on pMq for i implies, that pti,...,nu is a submersion in p´1
tiu ppai

0psq,bi
0psqqsP|∆ l |e

q “ M Ą

p´1
tαu

pIα
j ps, tqsP|∆ l |e

q, so ptα,...,nu is submersive there as well.

[g]To be precise, we take t P |∆ 1|e and extend the assignment so that it is constant outside r0,1s.
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So far the definition of PBordpn´dq,V
n depended on the choice of the vector space V . However, in the

bordism category we would like to consider all (not necessarily compact) n-dimensional manifolds.
By Whitney’s embedding theorem any such manifold can be embedded into some finite-dimensional
vector space V , so we need to allow big enough vector spaces.

Definition 2.2.21. We define PBordpn´dq,V
n to be the homotopy colimit of d-fold Segal spaces[h]

PBordpn´dq
n “ lim

ÝÑ
V ĂR8

PBordpn´dq,V
n “ hocolimV ĂR8 PBordpn´dq,V

n .

The last condition necessary to be a good model for the p8,dq-category of bordisms is completeness,
which PBordpn´dq

n in general does not satisfy. To see why this is consider PBordn, we observe that

pPBordnq0 » lim
ÝÑ

V ĂR8

pPBordnqV
0 » lim

ÝÑ
V ĂR8

RˆΨ0pV q

is a classifying space for closed manifolds of dimension pn ´ 1q (this follows from general position
arguments: as the dimension of the vector space V grows, the embedding spaces EmbpM,V q

become highly connected, so the homotopy type of the quotients EmbpM,V q{DiffpMq become
good approximations to the classifying spaces BDiffpMq). By contrast, invertible 1-morphisms
in the homotopy category hPBordn are given by invertible bordisms between pn ´ 1q-manifolds.
An invertible bordism B : M Ñ N arises from a diffeomorphism of M with N if and only if B
is diffeomorphic to a product M ˆ r0,1s. If n ě 6, the s-cobordism theorem asserts that this is
equivalent to the vanishing of a certain algebraic obstruction, called the Whitehead torsion of B.
Since there exist bordisms with nontrivial Whitehead torsion, the Segal space PBordn is not complete
for n ě 6 [Lur09c].

However, we can pass to its completion Bordn.

Definition 2.2.22. The p8,dq-category of n-bordisms Bordpn´dq
n is the d-fold completion

{

PBordpn´dq
n

of PBordpn´dq
n , which is a complete d-fold Segal space.

[h]Note that the identity map from the model category of d-fold simplicial spaces to the model category of d-fold Segal
spaces is a left adjoint (since it is a localization) and therefore preserves homotopy colimits. Thus, the homotopy
colimit can be computed in d-fold simplicial spaces.
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