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Abstract

Higher category theory is the generalization of category theory to a context where there are not
only morphisms between objects, but generally k-morphisms between (k — 1)-morphisms, for all
k € N. The theory of higher categories or (o, 1)-categories, as it is sometimes called, however, can
be very intractable at times. That is why there are now several models which allow us to understand
what a higher category should be. Among these models is the theory of quasi-categories, introduced
by Bordman and Vogt, and much studied by Joyal and Lurie. There are also other very prominent
models such as simplicial categories (Dwyer and Kan), relative categories (Dwyer and Kan), and
Segal categories (Hirschowitz and Simpson). One of those models, complete Segal spaces, was
introduced by Charles Rezk in his seminal paper “A model for the homotopy theory of homotopy
theory”. Later they were shown to be a model for (oo, 1)-categories.

Higher bordism categories. One major application of higher category theory and one of the
driving forces in developing it has been extended topological quantum field theory. This has
recently led to what may become one of the central theorems of higher category theory, the
proof of the cobordism hypothesis, conjectured by Baez and Dolan. Lurie suggested passing to
(o0, n)-categories for a proof of the Cobordism Hypothesis in arbitrary dimension n. However,
finding an explicit model for such a higher category poses one of the difficulties in rigorously
defining these n-dimensional TFTs, which are called “fully extended”. Our focus will be on the
(o0, d)-category Bord,(,"fd), a variant of the fully extended Bord,. Our goal is to sketch a detailed
construction of the (00, d)-category of n-bordisms as a d-fold complete Segal space, motivated by
the proof due to Damien Calaque and Claudia Scheimbauer [CS19].
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Outline of the thesis

Topological field theories (TFTs) arose as toy models for physical quantum field theories and have
proven to be of mathematical interest, notably because they are a fruitful tool for studying topology.
An n-dimensional TFT is a symmetric monoidal functor from the category of bordisms, which has
closed (n — 1)-dimensional manifolds as objects and n-dimensional bordisms as morphisms, to any
other symmetric monoidal category, which classically is taken to be the category of vector spaces or
chain complexes.

A classification of 1- and 2-dimensional TFTs follows from classification theorems for 1- and
2-dimensional compact manifolds with boundary, cf. [Abr96]. In order to obtain a classification
result for larger values of n one needs a suitable replacement of the classification of compact
n-manifolds with boundary used in the low-dimensional cases. Moreover, as explained in [BD95],
this approach requires passing to “extended” topological field theories. Here extended means that
we need to be able to evaluate the n-TFT not only at n- and (n — 1)-dimensional manifolds, but also
at (n —2)-,..., 1-, and 0-dimensional manifolds. Thus, an extended n-TFT is a symmetric monoidal
functor out of a higher category of bordisms. In light of the hope of computability of the invariants
determined by an n-TFT, e.g. by a triangulation, it is natural to include this data. Furthermore,
Baez and Dolan conjectured that, analogously to the 1-dimensional case, extended n-TFTs are
fully determined by their value at a point, calling this the Cobordism Hypothesis. A definition of
a suitable bicategory of n-bordisms and a proof of a classification theorem of extended TFTs for
dimension 2 was given in [SP09].

In his expository manuscript [Lur09c], Lurie suggested passing to (co,n)-categories for a proof
of the Cobordism Hypothesis in arbitrary dimension n. He gave a detailed sketch of such a proof
using a suitable higher category of bordisms, which, informally speaking, has zero-dimensional
manifolds as objects, bordisms between objects as 1-morphisms, bordisms between bordisms as
2-morphisms, etc., and for k > n there are only invertible k-morphisms given by diffeomorphisms
and their isotopies. However, finding an explicit model for such a higher category poses one of the
difficulties in rigorously defining these n-dimensional TFTs, which are called “fully extended”.

In [Lur09c], Lurie gave a short sketch of a definition of this (c0,n)-category using complete n-fold
Segal spaces as a model. Instead of using manifolds with corners and gluing them, his approach
was to conversely use embedded closed (not necessarily compact) manifolds, following along the
lines of [GTMWO09, Galll, BM14], and to specify points where they are cut into bordisms of
which the embedded manifold is a composition. Whitney’s embedding theorem ensures that every
n-dimensional manifold M can be embedded into some large enough vector space and suitable
versions for manifolds with boundary can be adapted to obtain an embedding theorem for bordisms.
Moreover, the rough idea behind the definition of the n-fold Segal space is that it includes the
data, for kj,...,k,, of the levels of PBord, is that the (ki,...,k,)-level of our n-fold Segal space
PBord,, should be a classifying space for diffeomorphisms of, in the ith direction k;-fold, composable



n-bordisms. Lurie’s idea was to use the fact that the space of embeddings of M into R® is contractible
to justify the construction.

Modifying this approach, the main goal of this report is to provide a detailed construction of
(c0,d)-category of n-bordisms, a variant of (0o,n)-category of n-bordisms Bord, suitable for
explicitly constructing an example of a fully extended nTFT, which will be the content of a
subsequent paper [Sch14].

Organization of the thesis

In Chapter 1, consisting of the first three sections, we recall the necessary tools from higher
category theory needed to construct higher categories of bordisms.

Section 1.1 reviews the theory of simplicial sets and simplicial spaces, forming the basic objects of
higher category theory. Section 1.2 reviews a model for (o0, 1)-categories given by complete Segal
spaces. In Section 1.3 we explain the model for (c0,n)-categories given by complete n-fold Segal
spaces and introduce a model which is a hybrid between complete n-fold Segal spaces and Segal
n-categories.

Chapter 2 is devoted to the construction of Bord,,.

Our construction of the (00, d)-category Bordfzn_d) of higher bordisms is based on a simpler complete
Segal space Int of closed intervals, which we introduce in Section 2.1. The closed intervals
correspond to places where we are allowed to cut the manifold into the bordisms it composes. The
fact that we prescribe closed intervals instead of just a point corresponds to fixing collars of the
bordisms.

Section 2.2 is the central part of this thesis and consists of the construction of the complete d-fold

Segal space Bord,g"_d) of n-bordisms, a variant of the n-fold Segal space Bord, of n-bordisms.



Chapter 1

Complete n-fold Segal spaces
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Section 1.1
A quick tour of simplicial spaces

In this section we take a quick look at categories and topological spaces to see how both of
them can be thought of as special cases of simplicial sets. This is an informal review of these
subjects, especially motivated by the Rasekh’s exposition [Ras18] and serves as a motivation for our
definition of a higher category, rather than a thorough introductory text. The section culminates in a
introduction to simplicial spaces, which combines category theory and homotopy theory.

1.1.1 Review of Category Theory

The philosophy of categories is not to just focus on objects but also consider how they are related to
each other. This leads to following definition of a category.

Definition 1.1.1. A category % is a set of objects ¢ and a set of morphisms . along with following
functions:

(1) Anidentity map id : O — A .
(2) A source-target map (s,t): .M — O x 0.
(3) A composition map m : A* X'y, M — M .
These functions have to make the following diagrams commute:

(1) Source-Target Preservation:

M — M 2 M ———— M
o . M i o
(2) Identity Relations:
d

o —4

(idﬁ-,idx l(m

Ox0O
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(3) Identity Composition:

(4) Associativity:

MMM o
% 1% %

mxid yz m

MM ——T— M

X
o
There are many examples of categories in the world of mathematics.

Example 1.1.2. Let Get be the category which has as objects all sets and as morphisms all functions

of sets. Then the function id assigns to each set the identity function and the source target maps (s,)
assigns to each function it’s source and target. Finally m is just the usual composition of functions.

Example 1.1.3. We can repeat the same example as above by replacing sets with a set that has
additional structure. So, we can define the category 7 op of topological spaces and continuous maps,
or groups and homomorphisms.

Remark 1.1.4. Very often we care about the morphisms between two specific objects. Concretely,
for two objects ¢,d € € = (U, .#) we want to define the set of maps with source ¢ and target d and
denote it as Hom (c,d), which we define as the following pullback

Homg (c,d) =+ x* M x9
o o

Using the philosophy of categories on categories themselves means we should consider studying
maps between categories.

Definition 1.1.5. A functor F : ¢ — & is a tuple of two maps. One map for objects Fy : Oy — Oy
and one map for morphisms F 4 : .#4 — .# 4, such that they satisfy following conditions:

(1) Respecting Identity: idgFgs = F yidy.

(2) Respecting Source/Target: sqoF 4 = Fpsy and tgF 4 = Fptyg.
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(3) Respecting Composition: F ymy =mg(F 4 X F z).

Example 1.1.6. The definition above allows us to define the category %at which has objects
categories and morphisms functors.

Repeating the philosophy of categories for functors leads us to the definition of a natural transformation.

Definition 1.1.7. Let F,G : € — & be two functors. A natural transformation & : F = G is a
collection of maps
o.:F(c)— G(c)

for every object ¢ € € such that for every map f : ¢ — d the diagram

F(e) s F(a)

commutes.
Using natural transformations we can even build more categories.

Theorem 1.1.8. Let € and & be two categories. The collection of functors from € to 9, denoted
by Fun(%,9) is a category with objects functors and morphisms natural transformations.

Notation 1.1.9. For two functors F,G : 4 — 2, we denote the hom set in this category as Nat (F,G).

This finally leads to the famous Yoneda lemma, which is one of the most powerful results in category
theory.

Definition 1.1.10. Let ¢ € ¥ be an object. There is a functor %, : ¥ — Set that send each object d
to the set Hom (c,d). Functoriality follows from composition.

Lemma 1.1.11. Let F : € — Set be a functor. For each object ¢ € €, there is a bijection of sets
Nat(%,,F) =~ F(c)
induced by the map that sends each natural transformation o to the value at the identity Q. (id,).

The definitions given up to here are quite cumbersome and necessitate the reader to keep track of
a lot of different information. It would be helpful if we could package that same information and
present it in a more elegant manner. The way we can achieve this goal is by using simplicial sets.
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1.1.2 Simplicial Sets: A Second Look at Categories

Simplicial sets are a very powerful tool that can help us study categories.

Definition 1.1.12. Let A be the category with objects all non-empty finite linearly ordered sets
[0] ={0}, [1]={0< 1}, [2]={0<1<2}, ..

and morphisms order-preserving maps of linearly ordered sets.

Notation 1.1.13. There are some specific morphisms in the category A that we will need later on.

* Foreachn > 0 and 0 <i < n+ 1 there is a unique injective map
di:[n]—>[n+1]

such that i € [n+ 1] is not in the image. More explicitly d;(k) = k if k <iand d;(k) = k+ 1 if
k=i

* Foreach n > 1 and 0 < i < n there is a unique surjective map
si:[n] = [n—1]

defined as follows. s;(k) =k if kK <i and s;(k) = k— 1 if k > i. Notice in particular that
si(i) = s;(i+ 1) = i and that s; is injective for all other values.

We have following amazing fact regarding these two classes of maps.

Remark 1.1.14. Every morphisms in A can be written as a finite composition of these two classes of
maps stated above. The maps satisfy certain relations that can be found in [GJ09, Page 4].

Notation 1.1.15. Because of this remark we can depict the category A as the following

do do
DESHIES LE=

Having studied A we can finally define a simplicial set.

Definition 1.1.16. A simplicial set is a functor X : A°” — Set.

Remark 1.1.17. Recall that A°? is the opposite category of A. It has the same objects but every
morphism has reverse source and targets.

Remark 1.1.18. Concretely a simplicial set is a choice of sets Xy, X1, X>, ... which have the appropriate
functions between them. Using the diagram above, we can depict a simplicial set as:
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dO dO ﬁ
X0 I—— X]% — X5 2 z
dy dy FL

notice that all arrows are reversed because this functor is mapping out of the opposite category of A.

Definition 1.1.19. A simplicial set is a functor and so the collection of simplicial sets is itself a
category with morphisms being natural transformations. We will denote this category by sSet.

A simplicial set is an amazing object of study. In the coming two sections we will see how, depending
on which aspects we focus on, a simplicial set can have a very interesting and diverse behavior. For
now we focus on the categorical aspects of simplicial sets.

First we show how we can build a simplicial set out of a category.

Construction 1.1.20. Let ¢ = (0,.#) be a category. Then we define N& as the following
simplicial set. First we define it level-wise as

Néy=0

NG, =M x..x M
o 0

where there are n factors of .# and n > 1. So, the 0 level is the set of objects and at level n we have
the set of n composable morphisms.

Now we construct the maps between them. It suffices to specify the maps s; and d;. If n = 0, then
S0 : N6y — N% is defined as 5o = idy. Moreover, dy,d; : N61 — NG are defined as dy = s,d = 1.

Letn > 1andlet (fi, f2,...,fn) € NG, be an element. For 0 <i<n+ 1, we define d; : N6, > N6,—1
for the following 3 cases:

(i=0) di((f1:f2s-sfn)) = (f2, 355 /)
(1<i<n) di((fi, foros fimts fis s fu)) = (F1s fry s it fis oo i)
(i=n+1) di((f1, 25 fn)) = (f1, fases 1)
Similarly, for 0 < i < n we define s; : 6;,, — %, for the following two cases:
(0 <i<n) $i(fir foroms firoms fu)) = (fis for sy gy, fir s f)
(i=n+1) s;((f1, /2, s fireos Sn)) = (fl,fz,...,ﬁ,...,f,,,id,(fh))

It is an exercise in diagram chasing to show that N4 satisfies the relations of a simplicial set with
the d; and s; defined above.
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Remark 1.1.21. Notice in order to define N% it did not suffice to have a two sets with 3 maps
between them. We needed the existence of the composition map to be able to make the definition
work.

This construction merits a new definition.
Definition 1.1.22. Let % be a category. The nerve of € is the simplicial set N4 described above.
The nerve construction fits well into our philosophy of category theory.

Theorem 1.1.23. The nerve construction is functorial. Thus we get a functor

N : Cat — sSet

Proof. We already constructed the map on objects. For a functor F : € — 2, the simplicial map
NF : N¢ — N can be defined level-wise as

® NFQ :Fﬁ

o NFnZF:// X ... XF%.
Fo  Fo
From here on it is a diagram chasing exercise to see that NF,, make all the necessary squares
commute.

Note that it clearly follows that if Iz : ¢ — % is the identity functor, then Nl is the identity map.
Moreover, N(F oG) = NF o NG. O]

Example 1.1.24. We have already introduced the linearly ordered set [n] before (Definition 1.1.12).
We can think of [n] as a category, where the objects are the elements and a morphism are ordered
2-tuples (i, j), where i < j. The source of such map (i, j) is i and the target is j. The identity map
of an element i is the tuple (i,i). Finally, we can compose two morphisms (i, j) and (j,k) to the
morphism (i,k). This gives us a category, which we will still denote by [r]. Notice in this case
for each chosen objects i, j there either is a unique morphism from i to j (if i < j) or there is no
morphism at all.

There is a more direct way to think about the set of morphisms. The ordered set [1] has two
ordered elements 0 < 1. Given that a morphism is a choice of two ordered elements, we can
think of a morphism as an order preserving map [1] — [r]. But that is exactly a morphism in
the category A. Thus the set of morphisms also corresponds to Hom ([1], [n]). Let us compute
N([n]). By definition N([n])o = [n]. Moreover, N([n]); = Homx([1],[n]). Next notice that
N([n])m = N([n])1 XN(n])o - XN ([n])o N ([12])1, which corresponds to a choice of m ordered numbers
(i1,i2,...,im). Using the same argument as the last paragraph, we see that N([n]),, = Homa ([m], [n]).
Thus, N([n]) is really just the representable functor

N([n]) = Homa(—,[n]) : A°? — Set

10
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This simplicial set is really special and thus deserves its own name.

Definition 1.1.25. For each n there is a representable functor, which maps [i] to Homy ([i],[n]).
We will denote this simplicial set by A[n]. By the Yoneda lemma, for any simplicial set X we have
following isomorphism of sets:

Homgse(A[],X)

lle

X,.

By now we have shown that we can take a category and build a simplicial set out of it. But can we
build every simplicial set this way? If not then which ones do we get?

Definition 1.1.26. A simplicial set X satisfies the Segal condition if the map

X, — X1 x..xXj
X X

is a bijection for n > 2.

The nerve N satisfies the Segal condition by its very definition. Thus not every simplicial set is
equivalent to the nerve of a category. But what condition other than the Segal condition do we need?

Theorem 1.1.27. Let X be a simplicial set that satisfies the Segal condition. Then there exists a
category € such that X is equivalent to N

Proof. We define the category ¢ as follows. It has objects 04 = Xy and morphisms .#Zy = X.
Then the source, target and identity maps are defined as s¢ = d; : X| — Xo, t¢ = do : X1 — Xo,
ide = 5o : Xo — X1 and the product map is defined as my = d; : X, — X;. Here we are using the fact
that X =~ X xx, X;. Thus we can think of m as a map m : 4y x Oy My — My, which is exactly
what we wanted. The simplicial relations show that € satisfies the conditions stated in Definition
1.1.1.

Finally, we have the following bijection.

(NC)y =My % ... x My =X x...xX1 =X,
O Of Xo Xo
This shows that N is equivalent to X and finished the proof. O

The upshot is that a simplicial set that satisfies the Segal condition has the same data as a category
and so instead of keeping track of all the necessary data and maps between them it packages
everything very nicely and it gives us much better control. This doesn’t just hold for the categories
themselves, but also carries over to functors.

11



Section 1.1. A quick tour of simplicial spaces 12

Theorem 1.1.28. Let € and 2 be two categories. Then the functor N induces a bijection of hom
sets
N :Homey(€,7) — Homgge(NC ,ND)

Proof. We prove the result by showing the map above has an inverse. Let f: N6€ — NZ be a
simplicial map. Then we define P(f) as the functor that is defined on objects as f, and defined on
morphisms as f]. The simplicial identities then show that it satisfies the conditions of a functors.
Finally, for any functor F : ¢ — 2, the composition PN (F) = F by definition. On the other hand for
any simplicial map f: N¢ — N2, NP(f) = f as they agree at level 0 and 1 and that characterizes
the map completely. O

Up until now we have shown how we can use the data of a simplicial set to study categories and
recover category theory. The next goal is to show we can use the same ideas to study homotopy
theory.

1.1.3 Homotopy Theory of Topological Spaces

Recall the classical definition of homotopies of topological spaces.

Definition 1.1.29. Two maps of topological spaces f,g : X — Y are called homotopic if there exists
amap H : X x [0,1] — Y such that H|y 1oy = f and H|x {1} = &

Definition 1.1.30. A map f: X — Y is called a homotopy equivalence if there existsamap g: Y — X
such that both fg and gf are homotopic to the identity map.

A key question in the homotopy theory of spaces is to determine whether a map is an equivalence
or not. However topological spaces can be quite pathological and so we often look for suitable
“replacements” i.e. equivalent spaces which have a simpler structure. One good example is a
CW-complex.

Theorem 1.1.31. For each topological space X there exists a CW-complex X and map X — X that
is a homotopy equivalence.

Thus from a homotopical perspective it often suffices to study CW-complexes rather than all spaces.
However, a CW-complex is built out of simplices. Thus what we really care about is how many
simplices we have and how they are attached to each other. This suggests that we can study spaces
from the perspective of simplicial sets.

12
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1.1.4 Simplicial Sets: A Second Look at Spaces

Here we show how we can use simplicial sets to study the homotopy theory of topological spaces.
We have already defined simplicial sets in the previous section. So, first we show how to construct a
simplicial set out of any topological space.

Definition 1.1.32. Let S(/) be the standard / + 1-simplex. Concretely S(/) is the convex hull of the
[+ 1 points (1,0,...,0),(0,1,...,0),...,(0,0,...,1) in R+ In particular, S(0) is a point, S(1) is an
interval and S(2) is a triangle.

Remark 1.1.33. One important fact about those simplices is that the boundary is built out of lower
dimensional simplices. For example, the boundary of a line is the union of two points or the
boundary of a triangle is the union of three lines. This means we have two maps dp,d; : S(0) — S(1)
that map to the two boundary points or we have three maps dy,d;,da : S(1) — S(2).

On the other side, we can always collapse one boundary component to lower the dimension of our
simplex. Thus there are two ways to collapse our triangle S(2) to a line S(1), which gives us two
maps so,s1 : S(2) — S(1). It turns out these maps do satisfy the covariant version of the simplicial
identities, which are also called the cosimplicial identities. This means we can thus define a functor

S:A— TJop

This functor can be depicted in the following diagram.

d do
S(0) ﬁﬁ% S(1) £ 5(2) :
1 b

Definition 1.1.34. Let X be a topological space. We define the simplicial set S(X) as follows.
Level-wise we define S(X) as
S(X)n = Homgop(S(n),X).

The functoriality of I as described in the remark above shows that this indeed gives us a simplicial
set.

Thus we can build a simplicial set out of every topological space. Each level indicates how many
n+ 1-simplices can be mapped into our space. However, we cannot build every kind of simplicial
set this way. Rather the simplicial set we constructed is called a Kan complex. In order to be able to
give a definition we need to gain a better understanding of simplicial sets first.

Definition 1.1.35. A simplicial set T is a subsimplicial set of S, if for any [ we have 7; — S;, and for
every morphism « : [k] — [/], the associated map S(a) : S; — Sy carries 7; into Tj. In particular, T
inherits the same face (d;s) and degeneracy (s’;s5) maps.

Example 1.1.36. There are two important classes of sub simplicial sets of A[/] (Definition 1.1.25):

13
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1. The first one is denoted by 0A[/] and defined as follows: 0A[/]; is the subset of all non-surjective
maps in Homy ([i],[]). In particular, this implies that for i < n, we have dA[l]; = A[l]; and
for i = [ we have 0A[l]; = A[l]; — {id[;)}. Intuitively it looks like the boundary of our convex
space i.e. A[/] with the center n-dimensional cell removed.

2. The second is denoted by A[l]; (0 <i <) and consists of non-surjective maps that satisfy
the following condition: (A[n];); is the subset of all maps in Homa ([/],[/]), that satisfy
following condition. If i is not in the image of the map then at least one other elements also
has to be not in the image. Concretely, this means it is also a subspace of dA[[] and it excludes
the face which is formed by all vertices except for i. Intuitively, this one looks like a boundary
where one of the faces (the one opposing the vertex i) has been removed as well. Given the
resulting shape it is very often called a “horn”.

Having gone through these definitions we can finally define a Kan complex.

Definition 1.1.37. A simplicial set K is called a Kan complex if for any / > 0 and 0 < i < [, the map
Homg(A[l],K) — Homg(A[l];,K)

is surjective.

Remark 1.1.38. Basically the definition is saying that following diagram lifts:

Example 1.1.39. For every topological space X, the simplicial set SX is a Kan complex. We will
not prove this fact here. It relies on the idea that a topological space has no sense of direction. Thus
every path can be inverted. Concretely, for any map y: I(1) — X, there isamap y~' : I(1) — X that
is defined as Y~ (t) = y(1 —t). Thus every element y € S(X); has a reverse path. A similar concept
applies to higher dimensional maps.

It is that idea that allows us to lift any map of the form above. For a rigorous argument see [GJ09,
Chapter 1].

Example 1.1.40. Contrary to the example above A[[] is not a Kan complex (if / > 0). For example
the map A[2]o — A[/] that sends 0 to 0, 1 to 2 and 2 to 1 cannot be lifted.

The definition above is a special case of a Kan fibration.
Definition 1.1.41. A map of simplicial sets f : S — T is a Kan fibration if any commutative square

of the form

14



Section 1.1. A quick tour of simplicial spaces 15

lifts, where n > 0and 0 < i < n.

Remark 1.1.42. This generalizes Kan complexes as K is a Kan complex if and only if the map
K — A[0] is a Kan fibration. As a result, if K — L is a Kan fibration and L is Kan fibrant, then X is
also Kan fibrant

Kan complexes share many characteristics with topological spaces. In particular, we can talk about
equivalences and homotopies.

Definition 1.1.43. Two maps f,g: L — K between Kan complexes are called homotopic if there
exists amap H : L x A[1] — K such that H|p = f and H|; = g.

Remark 1.1.44. This definition can be made for any simplicial set, but it is only a equivalence
relation for the case of Kan complex.

Example 1.1.45. One particular instance of this definition is when L = A[0]. In this case we
have two points x,y : A[0] — K. We say x and y are homotopic or equivalent if there is a map
Y:A[1] — K such that y(0) = x and y(1) = y.

Definition 1.1.46. A map f : L — K between Kan complexes is called an equivalence if there are
maps g,h : K — L such that fg : K — K is homotopic to idg and if : L — L is homotopic to id;.

Most importantly, in order to study equivalences of spaces it suffices to study equivalences of the
analogous Kan complexes.

Lemma 1.1.47. A map of topological spaces f : X — Y is a homotopy equivalence if and only if the
map of Kan complexes Sf : SX — SY is a homotopy equivalence.

Seeing how that result holds requires us to use much more machinery. One very efficient way is to
use the language of model categories. A model structure can capture the homotopical data in the
context of a category. Using model categories we can show that topological spaces and simplicial
sets (if we focus on Kan complexes) have equivalent model structures. For a better understanding of
model structures see [Hir03].

Remark 1.1.48. Kan fibrations are important in the homotopy theory of simplicial sets. That is
because base change along Kan fibrations is equivalence preserving. By that we mean that in the
following pullback diagram

15



Section 1.1. A quick tour of simplicial spaces 16

~

L ——

X K
M g*f
L

= M
f

K

|

if f is an equivalence and g is a Kan fibration then g* f is also an equivalence. Moreover, the
pullback of a Kan fibration is also a Kan fibration. Thus we say such a pullback diagram is homotopy
invariant.

Remark 1.1.49. The homotopy invariance of base change by a Kan fibration implies in particular
that we can define a homotopy pullback. We say a diagram of Kan complexes

A—B
CﬁD

is a homotopy pullback if the induced map A — B xp C is a homotopy equivalence. In other words,
we demand a pullback “up to homotopy” rather than a strict pullback. The fact that g is a Kan
fibration implies that this definition is well-defined.

Before we move on we will focus on one particular, yet very important instance of a homotopy
equivalence.
Definition 1.1.50. A Kan complex K is contractible if the map K — A[0] is a homotopy equivalence.

Remark 1.1.51. The notion of a contractible Kan complex is central in homotopy theory. It is
the homotopical analogue of uniqueness as it implies that every two points in K are equivalent.
Moreover, any two paths are themselves equivalent in the suitable sense and this pattern continues.

A contractible Kan complex is again a special kind of Kan fibration.

Definition 1.1.52. We say a map K — L is a trivial Kan fibration if it is a Kan fibration and a weak
equivalence.

Lemma 1.1.53. A map K — L is a trivial Kan fibration if and only if it is a Kan fibration and for
every map A[0] — L, the fiber A[0] x1 K is contractible.

Remark 1.1.54. Thus a trivial Kan fibration not only has lifts, but the space of lifts is contractible,
meaning there is really only one choice of lift up to homotopy.

16



Section 1.1. A quick tour of simplicial spaces 17

Having a homotopical notion of an isomorphism, namely an equivalence, we can also define the
homotopical version of an injection, namely a (—1)-truncated map.

Definition 1.1.55. A Kan fibration K — L is (—1)-truncated if for every map A[0] — L, the fiber
A[0] x K is either contractible or empty.

Before we move on there is one last property of Kan complexes that we need, namely that they are
Cartesian closed.
Remark 1.1.56. The category of simplicial sets is Cartesian closed. For every two simplicial sets
X,Y there is a mapping simplicial set, Map(X,Y) defined level-wise as

Map(X,Y), = Hom(X x A[n],Y).

Proposition 1.1.57. If K is a Kan complex, then for every simplicial set X, the simplicial set
Map(X,K) is also a Kan complex.

Notation 1.1.58. As we have established a well functioning homotopy theory with Kan complexes,
we will henceforth exclusively use the word space to be a Kan complex.

1.1.5 Two Paths Coming Together

Until now we showed that we can think of categories as a simplicial set that satisfies the Segal
condition and a topological space as a Kan complex. Thus simplicial sets have two different aspects
to them.

We can either think of simplicial sets that have a notion of direction and allow us to do category
theory. When we think of simplicial sets this way we denote them by sSet and pictorially we can
depict them as:

2
ngg

y 1]

g
6o T—=" ¢ 3
N

On the other side, we can think of simplicial sets that have homotopical properties. In this case we
call them spaces and denote that very same category as S. This time we depict it as:

17



Section 1.1. A quick tour of simplicial spaces 18

Ko

do ||| d1

do dy

A higher category should generalize categories and spaces at the same time. Thus our goal is it to
embed both versions of simplicial sets (categorical and homotopical) into a larger setting. We need
to start with a category which can house two versions of simplicial sets in itself independent of each
other so that we can give each the properties we desire and make sure one part has a categorical
behavior and one part has a homotopical behavior. This point of view leads us to the study of
simplicial spaces.

1.1.6 Simplicial Spaces

In this section we define and study objects that have enough room to fit two versions of simplicial sets
inside of it. We will call this object a simplicial space, although they are also known as bisimplicial
sets. The next subsection will justify why we have decided to use the term simplicial space.

Definition 1.1.59. We define the category of simplicial spaces as Fun(A°?,§) and denote it by s8.
Remark 1.1.60. We have the adjunction

Fun(A°P x AP Set) ~ Fun(A°P ,Fun(A°P Set)) = Fun(A°?.8).

Thus on a categorical level a simplicial space is a bisimplicial set. Therefore, we can depict it at the
same time as a bisimplicial set or as a simplicial space. We an depict those two as follows:

18



Section 1.1. A quick tour of simplicial spaces 19

— . )
Xoo I—/— Xio0 3 & X0 3

‘ $
Xo1r I—/—— X113 — Xo1 2
ANA NANA (N N
NN NN VA

- . $
Xoo I/— X123 & X 3
//I A NN

1

Xoe Y A— Xie % X2e

AAAA

Notice that Xye, X1, ... are themselves simplicial sets.

Remark 1.1.61. There are two ways to embed simplicial sets into simplicial spaces.

1. There is a functor
iF:AXA—A

that send ([n],[m]) to [n]. This induces a functor
i :s8et— s8
that takes a simplicial set S to the simplicial space i} (S) defined as follows.
i () = Sk
We call this embedding the vertical embedding.

2. There is a functor
IA:AXA—>A

that send ([n],[m]) to [m]. This induces a functor
iy : s8et — 58
that takes a simplicial set S to the simplicial space 7% (S) defined as follows.
ir(S) =S

We call this embedding the horizontal embedding.

19



Section 1.1. A quick tour of simplicial spaces 20

Given that there are two embeddings there are two ways to embed generators.

Definition 1.1.62. We define F(n) = ij-(A[n]) and A[l] = i} (A[!]). Similarly, we define OF (n) =
i%(0A[n]) and L(n); = iy (A[n];).

The category of simplicial spaces has many pleasant features that we will need later on.

Definition 1.1.63. The category of simplicial spaces is Cartesian closed. For any two objects X and
Y we define the simplicial space YX as

(Y¥),y = Hom,s (F (n) x A[l] x X,Y)

Remark 1.1.64. In particular, the previous statement implies that s8 is enriched over simplicial sets,
as for every X and Y, we have a mapping space Map,s(X,Y) = (YX)o.

Remark 1.1.65. Using the enrichment, by the Yoneda lemma, for any simplicial space X we have
following isomorphism of simplicial sets:

lle

MapsS(F(n)’X) Xn‘

20



Section 1.2. Complete Segal spaces 21

Section 1.2
Complete Segal spaces

We start with n = 1. An (0, 1)-category should be a 1-category up to coherent homotopy which is
encoded in the invertible higher morphisms. In this section, we will discuss one particular model for
(o0, 1)-categories. A good overview on different models for (o0, 1)-categories and their comparison
can be found in [Ber10]. It should be mentioned that by [To5] up to equivalence, there is essentially
only one theory of (00, 1)-categories; explicit equivalences between the models mentioned here
have been proved e.g. in [DKS89, Ber07, BK12, Horl5]. One additional model which should be
mentioned is that of Joyal’s quasi-categories. It has been intensively studied, most prominently in
[Lur09a].

1.2.1 The homotopy hypothesis and (c0,0)-categories

The basic hypothesis upon which co-category theory is based goes back to Grothendieck [Gro21]
and is the following:

Hypothesis 1.2.1 (Homotopy hypothesis). Spaces are models for co-groupoids, also referred to as
(c0,0)-categories.

Given a space X, its points, i.e. O-simplices, are thought of as objects of the (c0,0)-category, paths
between points as 1-morphisms, homotopies between paths as 2-morphisms, homotopies between
homotopies as 3-morphisms, and so forth. With this interpretation, it is clear that all n-morphisms
are invertible up to homotopies, which are higher morphisms.

We take this hypothesis as the basic definition, and model “spaces” with simplicial sets rather than
with topological spaces.

Definition 1.2.2. An (o0, 0)-category, or co-groupoid, is a space. According to our conventions, it
is a fibrant simplicial set, i.e. a Kan complex.

1.2.2 Topologically and simplicially enriched categories

Two particularly simple, but quite rigid models are topologically or simplicially enriched categories.

Definition 1.2.3. A ropological category is a category enriched in topological spaces. A simplicial
category is a category enriched in simplicial sets.

Topological and simplicial categories are discussed and used in [Lur09a, TV05]. These models
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Section 1.2. Complete Segal spaces 22

of (o0, 1)-categories are perhaps the easiest to visualize and are a great psychological aid but are
rigid to work with in practice because, among other problems, enriched functors do not furnish all
homotopy classes of functors between the (oo, 1)-categories being modeled, unless the domain and
codomain satisfy appropriate conditions!*). And even when those conditions are met, the category
of enriched functors might not correctly model the (oo, 1)-functor category, essentially because
enriched functors correspond to functors that preserve composition strictly while (oo, 1)-functors
are allowed to preserve it only up to coherent homotopy. For our applications, we would also like to
allow some flexibility for objects, not only morphisms, thus also requiring spaces of objects.

1.2.3 Segal spaces

Complete Segal spaces, first introduced by Rezk in [Rez01] as a model for (00, 1)-categories, turn
out to be very well-suited for geometric applications. We recall the definition in this section.

Definition 1.2.4. A (1-fold) Segal space is a simplicial space X = X, which satisfies the Segal
condition: for any n,m > 0 the commuting square

Xinyn —= X

)

Xn —Xo

induced by the maps [m] — [m+n], (0 <---<m)— (0<---<m),and [n] > [m+n],(0<--- <
n)— (m<--- <m+n), is a homotopy pullback square. In other words, the induced map

h
Xin+n — Xin X Xy
Xo

is a weak equivalence.
Defining a map of Segal spaces to be a map of the underlying simplicial spaces gives a category of
Segal spaces Se.Sp = SeSp,.

Remark 1.2.5. For any m > 1, consider the maps gg : [1] — [m], (0 < 1) — (B —1 < B) for
1 < B < m. Note that requiring the Segal condition is equivalent to requiring the condition that the
maps

h h
X, — X x---x X
Xo Xo

induced by g1, ...,g, are weak equivalences.

[2)Namely, that the domain be cofibrant and the codomain be fibrant in appropriate model structures.
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Section 1.2. Complete Segal spaces 23

Remark 1.2.6. Following [Lur(9c] we omit the Reedy fibrancy condition which often appears in the
literature. In particular, this condition would guarantee that for m,n > 0 the canonical map

is a weak equivalence. Our definition corresponds to the choice of the projective model structure
instead of the injective (Reedy) model structure, which is slightly different (though Quillen
equivalent) compared to [RezO1]. We will explain this in more detail in Section 1.2.4.

Definition 1.2.7. We will refer to the spaces X, as the levels of the Segal space X.

Example 1.2.8. Let ¥ be a small topological category. Recall that its nerve is the simplicial set

N(€), =Hom([n],¢)= | | Homg(xo,x1)x---Home(xy_1,%),
X0,---,Xn€ObE

with face maps given by composition of morphisms, and degeneracies by insertions of identities.
The nerve N(%) is a Segal space. Moreover, a simplicial set, viewed as a simplicial space with
discrete levels, satisfies the Segal condition if and only if it is the nerve of an (ordinary) category.

Segal spaces as (0, 1 )-categories

The above example motivates the following interpretation of Segal spaces as models for (oo, 1)-categories.
If X, is a Segal space then we view the set of O-simplices of the space Xy as the set of objects. For
x,y € Xo we view

Homy (x,y) = {x} x, X1 x}, {»}

as the (00,0)-category, i.e. the space, of arrows from x to y. More generally, we view X, as the
(o0, 0)-category, i.e. the space, of n-tuples of composable arrows together with a composition. Note
that given an n-tuple of composable arrows, the Segal condition implies that the corresponding fiber
of the Segal map X,, — X xé}o e xé}o X is a contractible space. The map X,, — X; determined by
the functor [1] — [1],0 < 1 — 0 < n can be thought of as “composition”, and thus we can think of
the n-tuple as having a contractible space of possible compositions. Moreover, one can interpret
paths in the space X; of 1-morphisms as 2-morphisms, which are invertible up to homotopies, which
in turn are 3-morphisms, and so forth.

The homotopy category of a Segal space

To a higher category one can intuitively associate an ordinary category, its homotopy category,
which has the same objects and whose morphisms are 2-isomorphism classes of 1-morphisms. For
Segal spaces, one can realize this idea as follows.
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Section 1.2. Complete Segal spaces 24

Definition 1.2.9. The homotopy category h;(X) of a Segal space X = X, is the (ordinary) category
whose objects are the O-simplices of the space Xy and whose morphisms between objects x,y € Xy
are

h h
Homy, ) (+.) = 7 (Hom (x.)) = 7 ({x};oxl {y})

For x,y,z € Xp, the following diagram induces the composition of morphisms, as weak equivalences
induce bijections on 7.

h h h h h h h
(e rx ko)« (D Enk@) — wixkake
= WX
— XXX

Example 1.2.10. Given a small (ordinary) category %, the homotopy category of its nerve, viewed
as a simplicial space with discrete levels, is equivalent to &,

h(N(%)) ~ C.

The above example motivates the following definition of equivalences of Segal spaces.
Definition 1.2.11. A map f : X — Y of Segal spaces is a Dwyer-Kan equivalence if
1. the induced map Ay (f) : h1(X) — h1(Y) on homotopy categories is essentially surjective, and

2. for each pair of objects x,y € Xj the induced map Homy (x,y) — Homy (f(x), f(y)) is a weak
equivalence.

1.2.4 Complete Segal spaces

We would like the equivalences of Segal spaces to be the Dwyer-Kan equivalences. However,
instead of considering all Segal spaces and their the Dwyer-Kan equivalences, it turns out that we
can instead consider a full subcategory of Segal spaces which satisfy an extra condition called
completeness, for which Dwyer-Kan equivalences have an equivalent, simpler, description. To make
sense of this, we need to first introduce the model categories involved.
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Section 1.2. Complete Segal spaces 25

The model structures of Segal spaces

We now describe various model structures on the category s.”pace of simplicial spaces in this
section. Ultimately, the goal is to have a model category whose fibrant objects deserve to be called
“(o0, 1)-categories” and whose equivalences are analogs of equivalences of categories. We will first
introduce model categories whose fibrant objects are Segal spaces. Then, in the next step, we will
fix the weak equivalences. We refer to [Rez01] and [Hor15] for more details.

Let us first consider the injective and projective model structures on the category of simplicial
spaces, denoted by s.pace and s.%pace 1 respectively. Note that the fibrant objects in s.%pace f
are the levelwise fibrant ones, while the fibrant objects of s.%’pace_ turn out to be the Reedy fibrant
simplicial spaces!”. Conversely, every object in s pace_ is cofibrant, see for example [Hir03,
Corollary 15.8.8.]. These model categories are Quillen equivalent (via the identity functor).

In the first step we perform left Bousfield localizations of the previous model structures s.%pace,
and s.%pace . with respect to the morphisms

A Ujo- LigpAl — A"

Se
f 9
equivalent. For the injective model structure, it is immediate that fibrant objects in s&”pacef“’ satisfy
X, = X| x X, " Xx, X1 and thus are Reedy fibrant Segal spaces. For the projective model structure,

it follows from [Hor15] that the fibrant objects in s&”paceff satisfy X, — X; xé}o cee X é}o X and thus

This provides two model categories, denoted sfpacefe and s.%pace’’, which still are Quillen

are Segal spaces!®!.

Complete Segal spaces

Even though the model categories sfpacefe and sjﬁpaceff3 have the (Reedy fibrant) Segal spaces
as their fibrant objects, there are not enough weak equivalences: every weak equivalence between
Segal spaces is indeed a Dwyer-Kan equivalence, but there are more Dwyer-Kan equivalences.

This problem can be circumvented by further localizing the model structures. For this new model
structure, the weak equivalences between Segal spaces turn out to be exactly the Dwyer-Kan
equivalences. We will see that these further localized model structures have fewer fibrant objects,
which are the complete (Reedy fibrant) Segal spaces. We will focus on the case of the projective
model structure, since the other case can be found spelled out in great detail in many references, for
example the original [Rez01], but to our knowledge the former has so far only appeared in [Hor15].

[bISee for example [Hir03, Theorem 15.8.7] for a proof that the injective and Reedy model structures coincide.
[*INote that this terminology is not consistent throughout the literature: often “Segal space” includes the Reedy fibrancy
condition. Our examples will not be Reedy fibrant, which is the reason for our choice of terminology.
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Section 1.2. Complete Segal spaces 26

Moreover, although we will phrase it for the projective model structure, the first part works the
same in the injective case. The difference appears when computing the involved mapping spaces
explicitly, see the remark below.

Intuitively, the condition we would like to impose is that the underlying co-groupoid of invertible
morphisms of the Segal space X, is already encoded by the space Xy. To translate this, we first need
to understand what the space of (homotopy) invertible morphisms of X, is.

Let f be an element in X; with source and target x and y, i.e. its images under the two face maps
X1 3 Xp are x and y. It is called invertible if its image under

h h h h
{3 X0 x O — () KX K ) — o ({x};oxl x {y}) — Homy ) (1)

is an invertible morphism in /; (X), i.e. it has a left and right inverse.

To define the space of invertible morphisms, consider the walking isomorphism /[1], which is the
category with two objects and one invertible morphism between them,

=

Mapping the walking isomorphism into an arbitrary category ¢ we get the isomorphisms of %', and
therefore the information about its underlying groupoid. Mimicking this procedure for a Segal space
X., we consider the derived mapping space

Map, 5 (N(I[1]).X).

Moreover, an analog of [Rez01, Lemma 5.8] shows that if an element in X| is invertible, any element
in the same connected component will also be invertible. Thus we define the space of invertible
morphisms in X, to be the homotopy pullback!"!

Xf‘/ hJ )I
ﬂ:OMapsYpacej“ (N(I[]]),X) — mX = ﬂoMapsypmie (A ! ,X)
Here, the bottom arrow arises from the obvious functor [1] — I[1].

Finally, identity morphisms in X, should be invertible. Indeed, the degeneracy map s¢ : [1] — [0]
factors as [1] — I[1] — [0] and induces a map

Xo — X"

[41To compare with the definition in [Hor15], note that the pullback is a homotopy pullback since the map X; — 7o (X;)
is a fibration.
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Definition 1.2.12. A Segal space X, is complete if the map Xy — Xf”v is a weak equivalence. We
denote the full subcategory of .”e.”p whose objects are complete Segal spaces by €¢.7.p =
€SI,

Example 1.2.13. Let & be a category. Then N(%’) is a complete Segal space if and only if there are
no non-identity isomorphisms in %, i.e. the underlying groupoid of % is a set (viewed as a category
with only identity morphisms).

In order to compute X f”v explicitly, we have to be able to describe the (derived) mapping space
Mapsypace;g(N(I[l]),X).

Lemma 1.2.14. We have a homotopy pullback square

Mapsfpace;" (N(I[l] )7X> ” X3

{Ol}u{lj}l' h, JﬁOJ}u{IJ}

XoxXg — X1 x X|.

Proof. Note that since X, was assumed to be a Segal space, it is fibrant, but N(I[1]) might not be
cofibrant'!. So to compute the desired mapping space, we cofibrantly replace N(I[1]) and then
compute the mapping space in the underlying category,

Map s (N(I[1]), X) =~ Map . gpqe, (cof (N(I[1])) , X))
To compute the cofibrant replacement, the crucial observation (originally by [Rez01], reformulated
by [BSP21]) is that the nerve of I[1] can be obtained by the pushout of simplicial sets
K = A% Ugoy,,000 (A%0A°).

This can be seen as contracting the edges {0,2} and {1,3} in the 3-simplex:
3
N\
/NP
- \'#
0——1

We use an argument similar to that in [JFS17, Remark 3.4], which observes the following: K is
given by a strict pushout along a diagram of cofibrant objects of which one arrow is an inclusion.
By [Lur(9a, A.2.4.4], this is a homotopy pushout in the injective model structure and therefore

[*INote that for the injective model structure, it is cofibrant and therefore Xf”" is just the subspace of X; of invertible
morphisms.
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Section 1.2. Complete Segal spaces 28

homotopy equivalent to the homotopy pushout in the projective model structure. So a cofibrant
replacement of K is given by taking the homotopy pushout of the same diagram,

cof (K) = A% Lk 100y 0 (A0 A).

Finally, we obtain the space as the wanted homotopy pullback!" O

Complete Segal spaces as fibrant objects

There is a further model structure on the category of simplicial spaces which implements completeness.
It is obtained by a further left Bousfield localization, with respect to the morphism

A — N(I[1)).

This provides two Quillen equivalent model categories, denoted 5.7 pacefs ¢and 5.7 pace}ccse. Fibrant

objects in sypacefse, respectively sﬂpace?s", are Reedy fibrant complete Segal spaces, respectively

complete Segal spaces.

Summarizing, we have the following diagram

s./pace, : s.Space,

I I

s pacefe SYpaceff

I I

5.7 paceccs ¢ CSe

s pace 7

—

where the horizontal arrows are Quillen equivalences induced by the identity and the vertical arrows
are localizations.

The following Proposition shows that in the localized model structure Dwyer-Kan equivalences
of Segal spaces indeed are weak equivalence, and therefore we have fixed the concern mentioned
above. We refer to [Hor15, Theorem 5.15] for a proof, which makes substantial use of the analogous
result for Reedy fibrant Segal spaces in 5. pacefse from [Rez01, Theorem 7.7].

Theorem 1.2.15. Let X and Y be Segal spaces. A morphism f : X — Y is a weak equivalence in

s pacejc,se if and only if it is a Dwyer-Kan equivalence.

If1This can be compared to Rezk’s definition using the zig-zag category 0= 2 <13 and requiring the morphisms 0—>2
and 13 to be identities.
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As a consequence the obvious inclusions induce the following equivalences of categories:
Cf&’&”p[[we_l] — SeSp DK — Ho(sypacejgse) ,

where DX and [we stand for the subcategory of Dwyer-Kan and levelwise weak equivalences,
respectively.

This justifies the following definition.

Definition 1.2.16. An (o0, 1)-category is a complete Segal space.

Remark 1.2.17. We denote the category of Reedy fibrant complete Segal spaces by ¢ p _, that
cs cs
” e f e
equivalent, so that the embedding ¢’ p, = € ../p induces an equivalence €.’ pc[[we_l] —

%pr[[wfl] of which an inverse is given by the Reedy fibrant replacement functor (—)&.

Sometimes it turns out to be more useful to work in the model category s.7’ pacefse as every object
is cofibrant. Note that the Reedy fibrant replacement functor does not change the homotopy type of

the levels.

is to say the fibrant objects in s&’pacefs". Remember that s.”pace’ > and s.”pace”° are Quillen

Definition 1.2.18. The fibrant replacement functor in the model category 5.7 pacejccse sending a
Segal space to its fibrant replacement is called completion. In [RezO1] Rezk gave a rather explicit
construction of the completion of Segal spaces. He showed that there is a completion functor which
to every Segal space X associates a complete Segal space X together with a map iy : X — X, which
is a Dwyer-Kan equivalence.

Remark 1.2.19. The completeness condition says that all invertible morphisms essentially are just
identities up to the choice of a path. In this sense, one might like to think of complete Segal spaces
as a homotopical version of skeletal'®! or reduced category, and, since any category is equivalent to
a reduced one, assuming this extra condition is harmless. However, the information on the invertible
morphisms is merely encoded in a different way, namely, in the spatial structure. Also, we would
like to remark that in the homotopical situation, this intuition might be misleading: indeed, instead
of thinking of a complete Segal space as having few invertible morphisms, it is better to think
of a complete Segal space as having a “maximal” space of objects. This is illustrated by [Rez01,
Corollary 6.6]. A good example to keep in mind is a special case of [RezO1, Remark 14.1]: given a
group G, we can view as a category with one object, and consider its nerve. Its completion is the
constant simplicial space BG.

: .y S S CS
Remark 1.2.20. It is worth noticing that s.pace ., s.pace ., s./pace;, s.%pace’, s pace >, and
s pacefse are all Cartesian closed simplicial model categories. In particular, for any simplicial

space X and any complete Segal space Y, the simplicial space Y is a complete Segal space.

[2]A category is called skeletal if each isomorphism class contains just one element, see for example [Riel7].

29



Section 1.3. Complete n-fold Segal spaces 30

Section 1.3
Complete n-fold Segal spaces

As a model for (c0,n)-categories, we will use complete n-fold Segal spaces, which were first
introduced by Barwick in his thesis and appeared prominently in Lurie’s [Lur09c]. Details can
be found e.g. in [Lur09b, BSP21, BR13]. (oo,n)-categories are homotopical versions of weak
n-categories. Recall that n-categories are inductively built by taking categories (weakly) enriched
in (n— 1)-categories. For n = 2 these are known as 2-categories (strict) or bicategories (weak).
Alternatively, one could choose to consider categories internal to (n — 1)-categories, i.e. they have a
whole (n — 1)-category of objects. For n = 2 these were first introduced under the name of double
categories by Ehresmann in [Ehr63] and have been thoroughly studied in category theory. Therefore
we will call the higher versions thereof n-uple categories'™. Even though we present our main
example as an n-fold Segal space in the next part, it actually arises from such an “n-uple” version as
we will see later on.

Moreover, it even comes from a more rigid model, namely from internal n-uple categories, which
are n-uple categories internal to simplicial sets. This model is the easiest to define, which is why we
start with it.

1.3.1 Internal n-uple categories

Iterating the approach in [Hor15], one obtains a model for (c0,n)-uple-categories given by n-uple
categories internal to simplicial sets, i.e. categories internal to the category of (n — 1)-uple categories
internal to simplicial sets. Unravelling the definition for n = 2, there is a space of objects, a space
of “horizontal” 1-morphisms, a space of “vertical” 1-morphisms, and a space of 2-morphisms,
together with unit maps and composition maps. For larger n, there is a space of objects and suitable
spaces of higher morphisms “in all directions”, again together with unit maps and composition maps.
Equivalently, an n-uple category internal to simplicial sets is a simplicial object in (strict) n-fold
categories. This model has been discussed in [CH16].

Our bordism category defined in the next part secretly is such an internal n-uple category, however,
details on this model were not available at the time of writing this article, so we will present it in a
different way here.

Remark 1.3.1. Note that composition is well-defined on the nose, as opposed to the models we will
consider in the next sections.

(M This is non-standard: usually they are called n-fold categories. However, by an unfortunate choice of terminology,
complete n-fold Segal spaces will correspond to n-categories. In order to hopefully reduce confusion we will instead be
consistent in using “uple” for internal versions and reserve “fold” for the enriched, globular version.
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1.3.2 n-uple and n-fold Segal spaces
Recall that an n-uple!’! simplicial space is a functor X : (A°P)*" — #pace. An n-uple Segal space is
an n-uple simplicial space with an extra condition ensuring it is the co-analog of an n-uple category.

Definition 1.3.2. An n-uple Segal space is an n-uple simplicial space X = X, o such that for every
1 <i<mn,andevery ky,...,ki—1,kit1,...,kn =0,

Xkl7-~-7ki71~,‘7ki+17-~-7kn
is a Segal space.

Defining a map of n-uple Segal spaces to be a map of the underlying n-uple simplicial spaces gives
a category of n-uple Segal spaces, .”e.p".

Imposing an extra globularity condition leads to a model for co-analogs of n-categories:

Definition 1.3.3. An n-uple simplicial space X, . is essentially constant if the map from the
constant n-uple simplicial space Xj .. o given by the degeneracy maps

Xo,..0—X
is a weak equivalence of n-uple simplicial spaces.

Definition 1.3.4. An n-fold Segal space is an n-uple Segal space X = X, o such that for every
1 <i<mn,andevery ky,...,ki—1 =0, the (n—i)-uple simplicial space

Xt ki 1,08,
is essentially constant.!]

Defining a map of n-fold Segal spaces to be a map of the underlying n-uple simplicial spaces gives a
category of n-fold Segal spaces, .e.p, .

Remark 1.3.5. Alternatively, one can formulate the conditions iteratively. First, an n-uple Segal
space is a simplicial object Y, in (n — 1)-uple Segal spaces which satisfies the Segal condition. Then,
an n-fold Segal space is a simplicial object Y, in (n — 1)-fold Segal spaces which satisfies the Segal
condition and such that Y is essentially constant (as an (n — 1)-fold Segal space). To get back the
above definition, the ordering of the indices is crucial: X, . x, = (Y, )ky,.. k

n*

li1 Again, usually, this is called an n-fold simplicial space, but we use this terminology to emphasize the difference.
lITo be consistent with our choice of “uple” versus “fold”, we could call an n-uple simplicial space which satisfies this
extra condition an n-fold simplicial space.
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Interpretation as higher categories

An n-fold Segal space can be thought of as a higher category in the following way.

The first condition means that this is an n-uple category, i.e. there are n different “directions” in
which we can “compose”. An element of Xj, i should be thought of as a composition consisting
of k; composable morphisms in the ith direction.

The second condition imposes that we indeed have a higher n-category, i.e. an n-morphism has as
source and target two (n — 1)-morphisms which themselves have the “same” (in the sense that they
are homotopic) source and target.

For n = 2 one can think of this second condition as “fattening” the objects in a bicategory. A
2-morphism in a bicategory can be depicted as

The top and bottom arrows are the source and target, which are 1-morphisms between the same
objects.

In a 2-fold Segal space X, ., an element in X; ; can be depicted as

The images under the source and target maps in the first direction X; 1 =3 X o are 1-morphisms
which are depicted by the horizontal arrows. The images under the source and target maps in the
second direction X 1 3 Xp,1 are 1-morphisms, depicted by the dashed vertical arrows, which are
essentially just identity maps, up to homotopy, since X 1 =~ X o. Thus, here the source and target
I-morphisms (the horizontal ones) themselves do not have the same source and target anymore, but
up to homotopy they do.

The same idea works with higher morphisms, in particular one can imagine the corresponding
diagrams for n = 3. A 3-morphism in a tricategory can be depicted as
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AN

whereas a 3-morphism, i.e. an element in X ;; in a 3-fold Segal space X can be depicted as

>
Kl
>
>
4
>

Here the dotted arrows are those in Xo 1.1 =~ Xo,0,1 =~ Xo,0,0 and the dashed ones are those in Xj o1 ~
X1,0,0-

Thus, we should think of the set of 0-simplices of the space Xy . ¢ as the objects of our category,
and elements of X 1,..0 as i-morphisms, where 0 < i < n is the number of 1°s. Pictorially, they
are the i-th “horizontal” arrows. Moreover, the other “vertical” arrows are essentially just identities

,,,,,

which therefore are invertible up to a homotopy, which itself is an (n + 2)-morphism, and so forth.

The homotopy bicategory of a 2-fold Segal space

To any higher category one can intuitively associate a bicategory having the same objects and
1-morphisms, and with 2-morphisms being 3-isomorphism classes of the original 2-morphisms.

Definition 1.3.6. The homotopy bicategory hy(X) of a 2-fold Segal space X = X, . is defined as
follows: objects are the points of the space Xo o and

h h
Hom, (1) = b (Homs (1) = () % X1 % )
0,0 0,0

as Hom categories. Horizontal composition is defined as follows:

<{X}X%°XL.X§~ {y}> - ({y}Xg.Xl"Xg. {Z}) - {x}xg.xl’. %.Xl"xg. {z}
o {X}Xg.xz,.xg. (2}

() X Xiu % {2)
— X X o X (-
X(l,. 17 XOA,o
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The second arrow happens to go in the wrong way but it is a weak equivalence. Therefore after
taking h; it turns out to be an equivalence of categories, and thus to have an inverse (assuming the
axiom of choice).

A proof that this definition indeed gives a bicategory will be the subject of a subsequent article.

1.3.3 Complete and hybrid n-fold Segal spaces

As with (1-fold) Segal spaces, we need to impose an extra condition to ensure that invertible
k-morphisms are paths in the space of (k — 1)-morphisms. Again, there are several ways to include
its information.

Definition 1.3.7. Let X be an n-fold Segal space and 1 < i, j < n. It is said to satisfy

CSS' if for every ky,...,ki_1 =0,

X, ki—1,9.0,...0
is a complete Segal space.

SCJ if for every ki,...,kj—1 =0,

Xy, kj_1,0,0,....0
is discrete, i.e. a discrete space viewed as a constant (n — j + 1)-fold Segal space.
Definition 1.3.8. An n-fold Segal space is
1. complete, if for every 1 <i < n, X satisfies (1.3.7).
2. a Segal n-category if for every 1 < j < n, X satisfies (1.3.7).

3. m-hybrid for m = 0 if condition (1.3.7) is satisfied for i > m and condition (1.3.7) is satisfied
for j < m.

Denote the full subcategory of .#e.#p of complete n-fold Segal spaces by €. p, .

Remark 1.3.9. Note that an n-hybrid n-fold Segal space is a Segal n-category, while an n-fold Segal
space is 0-hybrid if and only if it is complete.

For our purposes, the model of complete n-fold Segal spaces is well-suited, which leeds us to the
following definition.

Definition 1.3.10. An (o0, n)-category is a complete n-fold Segal space.
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The underlying model categories

Similarly to subsection 1.2.4 there are model categories running in the background. We can consider
either the injective or projective model structure on the category of n-uple simplicial spaces s.”pace”,
which we denote by s.pace. respectively 5.7 pace;.. Bousfield localizations at the analogs of the
Segal maps give model structures whose fibrant objects are (Reedy fibrant) n-uple Segal spaces,
further localizing at maps governing essential constancy, the fibrant objects become (Reedy fibrant)
n-fold Segal spaces, and a third localization at a map imposing completeness gives model structures
s pacegie respectively 5.7 paceise whose fibrant objects are (Reedy fibrant) complete n-fold Segal
spaces, see [Lur09b, BSP21] and [JFS17, Appendix]. Note that again, the identity map induces a
Quillen equivalence between s.%pace’’ and 5.7, pace; which descends to the localizations.

Alternatively, and by [JES17, Appendix, Proposition A.9] equivalently, the construction of complete
Segal objects for absolute distributors from [LurO9b] provides an iterative definition of these model
categories by considering simplicial objects in a suitable model category (which is taken to be
the appropriate localization of s.%pace Le respectively 5.7 pace, | f) and localizing at the maps
governing the Segal condition, essential constancy, and/or completeness in the new simplicial
direction.

[Lur09b] also provides a model category whose fibrant objects are Segal category objects in some
suitable underlying model category, thus allowing an iteration of the construction of Segal categories
as well. Applying this construction m times to the above one for complete (n —m)-fold Segal spaces
provides a model category whose fibrant objects are m-hybrid n-fold Segal spaces.

One can show (see e.g. in [Bar05, LurO9b, BR13, BR20]) that equivalences between (possibly
non-complete) n-fold Segal spaces for this model structure are exactly the Dwyer-Kan equivalences,
which are defined inductively. For this we need the following inductive definition of the homotopy
category of an n-fold Segal space:

Definition 1.3.11. The homotopy category h;(X) of an n-fold Segal space X, . is the following
category: its objects are the O-simplices, i.e. the points of Xy . For x,y two objects, we let

-----

be the (n — 1)-fold Segal space of morphisms!*! from x to y. Now let morphisms in 41 (X) from x to
y be the set of isomorphism classes of objects in ; (Homy (x,y).. ), Which is already defined by
induction. Composition is defined using the Segal condition in the first index.

Definition 1.3.12. A morphism f : X — Y of n-fold Segal spaces is a Dwyer-Kan equivalence if

1. the induced functor A (f) : b1 (X) — h;(Y) is essentially surjective.

[klwe will revisit this notion in 1.3.4.
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2. for each pair of objects x,y € Xy . o, the induced morphism Homy (x,y) — Homy (f(x), f(v))
is a Dwyer-Kan equivalence of (n — 1)-fold Segal spaces.

Again we obtain equivalences of complete Segal spaces
N(€¢Sp,,lwe) — N(SeSp,, DK) — N(sSpace,, fcse),

CSe

n7f.

Remark 1.3.13. Note that ¢’ p, is the subcategory of fibrant objects for a left Bousfield
localization of s.%pace, 7 and weak equivalences of complete n-fold Segal spaces are level-wise
weak equivalences. Denoting the category of fibrant objects in SYpaceiie, the Reedy fibrant
complete n-fold Segal spaces, by €. p, ., the Quillen equivalence between sSpace, . and

s pace, . induces an equivalence N (¢ Sp, ., lwe) — N(€¢SFp,, lwe), whose inverse is
K ,

where V/fcse is the subcategory of weak equivalences in the localization s.”pace

given by Reedy fibrant replacement (—)

Recall from Remark 1.3.5 that we can think of an n-fold Segal space in an iterative way: we can
view an n-fold Segal space as a Segal object in (n — 1)-fold Segal spaces, which we in turn can think
of a Segal object in Segal objects in (n — 2)-fold Segal spaces, etc. Then condition (CSS’) above
means that the ith iteration is a complete Segal space object. For more on this point of view, see
[Lur09b, Haul8]

iteratively to obtain a complete n-fold Segal space X, . ., its (n-fold) completion. This yields a
map X — X, the completion map, which is universal among all maps (in the homotopy category)
to complete n-fold Segal spaces. It is a left adjoint to the embedding of €. an[[we_l] into

Ye&”pn[[we_l].

If an n-fold Segal space X, ... o satisfies (SCY) for j < m, we can apply the completion functor just to
the last (n —m) indices to obtain an m-hybrid n-fold Segal space X," ,, its m-hybrid completion.

1.3.4 Constructions of n-fold Segal spaces

We describe several intuitive constructions of (co,n)-categories in terms of (complete) n-fold Segal
spaces.

Truncation

Given an (o0,n)-category, for k < n its (00,k)-truncation, or k-truncation, is the (00,k)-category
obtained by discarding the non-invertible m-morphisms for k < m < n.
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In terms of n-fold Segal spaces, there is a functor 7 : Se.p — Sep, sending X = X, . toits
k-truncation, the k-fold Segal space

TkXZXO,...,O,O,...,O'
~——

k times n—k times

If X is m-hybrid then so is 7, X by the definition of the conditions (1.3.7) and (1.3.7). In particular, if
X is complete, then 7;.X is as well, and thus, the truncation of an (o0, n)-category is an (00, k)-category.

Caution 1.3.15. Truncation does not behave well with respect to completion, i.e. the truncation of
the completion is not the completion of the truncation. However, we get a map in one direction:

Te(X) — 5(X)

1.7
T (X)

In general, this map is not an equivalence. So in general one should always complete an n-fold
Segal space before truncating it. For example, for » = 1 and a non-complete Segal Space X, the
truncation 7y (X) = Xp is just the zeroth space, but the truncation of the completion will be equivalent
to the underlying co-groupoid Xf"v. The map in this case is given by the degeneracy map. In the
example X = N(G) from Remark 1.2.19, the former is N(G)o = {} and the latter is BG, which are
not equivalent in general.

Remark 1.3.16. As explained above, the k-truncation of an (oo, n)-category X should be the maximal
(o0, k)-category contained in X. However, the image of the degeneracy

consists exactly of the invertible m-morphisms for k < m < n if and only if X satisfies (1.3.7) for
k < i < n. For example, if X = X, is a (1-fold) Segal space then X)) is the underlying co-groupoid of
invertible morphisms if and only if X is complete.

Extension

Any (o0, n)-category can be viewed as an (00,n+ 1)-category with only identities as (n+ 1)-morphisms.

In terms of n-fold Segal spaces, any n-fold Segal space can be viewed as a constant simplicial object
in n-fold Segal spaces, i.e. an (n + 1)-fold Segal space which is constant in the first index. Explicitly,

...« 1s the constant simplicial object in the category of
Segal spaces given by X, i.e. it is the (n + 1)-fold Segal space such that for every k > 0,

S(X)o7..,7o7k =Xe. ..o

-----
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and the face and degeneracy maps in the last index are identity maps.

Lemma 1.3.17. If X is complete, then €(X) is complete.

is complete. This is satisfied because

(e(X)10,..0)™ = €(X)10,..0 = Xo....0 = €(X)0...0;

since morphisms between two elements x,y in the homotopy category of €(X)e,,. , are just
connected components of the space of paths in Xj, . x,, and thus are always invertible. 0

We call ¢ the extension functor, which is left adjoint to 7,. Moreover, the unit id — 7| o € of the
adjunction is the identity.

Inverting
Given an (00,n)-category, for k < n we obtain an (00, k)-category by inverting the non-invertible
m-morphisms for k < m < n.

We saw that the extension functor € had a right adjoint 7,. It also has a left adjoint 17, which formally
inverts all (n+ 1)-morphisms. For an n-fold Segal space X, this is given by realizing the last index,

(nX)k1,~'-7kn = ’th..‘,k,,,o

Here geometric realization amounts to taking the diagonal of the bisimplicial set Xi, 1, o. Since
the following diagram of right adjoints commutes, the diagram of left adjoints commutes as well.
Therefore, completion and inverting commute.

£ T
SeSp,., T TLeSp,
~__~
Ol O -
£
¢SSP, T CLIp,
~_N_~

The higher category of morphisms and loopings

Given two objects x,y in an (00,n)-category, morphisms from x to y should form an (co,n —
1)-category.
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This can be realized for n-fold Segal spaces, which is one of the main advantages of this model for
(o0, n)-categories.

Definition 1.3.18. Let X = X, ... . be an n-fold Segal space. As we have seen above one should
think of objects as vertices of the space Xy . Let x,y € Xo__o. The (n— 1)-fold Segal space of
morphisms from x to y is

h h
Homy (x,y)s.... o = {x}X X Xie..o X {y}.
0.

X ICERN ) X0,0,--,0
Remark 1.3.19. Note that if X is m-hybrid, then Homy (x,y) is (m — 1)-hybrid.

Example 1.3.20 (Compatibility with extension). Let X be an (c0,0)-category, i.e. a space, viewed
as an (oo, 1)-category, i.e. a constant (complete) Segal space €(X ), £(X); = X. For any two objects
x,y € €(X)p = X the (c0,0)-category, i.e. the space, of morphisms from x to y is

h
Home 1) (1) = )

X e X ) = (x) X D) = Pathe ().

the path space in X, which coincides with what one expects by the interpretation of paths, homotopies,
homotopies between homotopies, etc. being higher invertible morphisms.

Definition 1.3.21. Let X be an n-fold Segal space, and x € Xy an object in X. Then the looping of X
at x is the (n — 1)-fold Segal space

‘QX(X)°~,~~-7‘ = HOHIX()C,)C).7...7. = {X} Xio. -XL.?"'?. x?(()o . {X}

s, ®@ T A e

In the following, it will often be clear at which element we are looping, e.g. if there essentially is
only one element, or at a unit for a monoidal structure, which we define in the next section. Then
we omit the x from the notation and just write

QX = Q(X) = Q,(X).

We can iterate this procedure as follows.

Definition 1.3.22. Let Q0(X) = X. For 1 < k < n, let the k-fold iterated looping be the (n — k)-fold
Segal space
Q{(X) = (7 (X)),

X

where we view x as a trivial k-morphism via the degeneracy maps, i.e. an element in -Q)]f_l X)o....0o—
X 1..1.0,..0
——
k

Looping k times commutes with taking the k-hybrid completion up to weak equivalence, since
completion is taken index by index:
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Let X be a k-hybrid n-fold Segal space. Then for the k-hybrid completion X, which is the completion
in the last (n — k) variables, we have that Q*(X) = X 1,...1.,.. is complete, so by the universal
—

k
property of completion, the horizontal map in the following diagram exists:

Lemma 1.3.23. Let X be a k-hybrid n-fold Segal space. Then the induced map

QF(X) S QFR)

is a level-wise weak equivalence.

Proof. In the diagram

we know that the vertical map is a DK-equivalence, since completions are DK-equivalences.
Moreover, since X is hybrid, we have that Q(X) = X; ;. ,and Q¥X)>X; .,

LI

k k
and by definition of (hybrid) completion, X; 1, ,— X 1....1... o18Justacompletion, so itis
Y . b . ’ ’

a DK-equivalence. Thus, in the diagram

X1, o lee " P XY e

k k
X1, lee
[

k

by the two-out-of-three property, the horizontal morphism is as well. But since both X l,il\

,0,...,0
~——
k
and X 1,... 1,04 complete, it is a level-wise equivalence. O

——
k
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n-fold from n-uple Segal spaces

We can extract the maximal n-fold Segal space from an n-uple one by the following procedure.
Let us recall and introduce some notation for various model structures on the category of n-uple
simplicial spaces.

. SYpacefff)S6, where fibrant objects are (complete) n-fold Segal spaces.

5. pacefli)se, where fibrant objects are Reedy fibrant (complete) n-fold Segal spaces.

* 5. paceg’ef , where fibrant objects are n-uple Segal spaces.
* s.pace; , where fibrant objects are Reedy fibrant n-uple Segal spaces.

From now, let = € {c, f}. There are (two) Quillen adjunctions
57 pacese ‘f s paceg’” .
id

Let us denote (in a rather unusual way) L := Rid : N (sypace w.e.) — N(s.Spaceg, , w.e.).
Observe that on fibrant objects, L is nothing but the inclusion of (p0531b1y Reedy fibrant) n-fold
Segal spaces into (possibly Reedy fibrant) n-uple Segal spaces. After [Haul8, Proposition 4.12], we
know it has a right adjoint R. For the given (possibly Reedy fibrant) n-uple Segal space X, we wish
to compute R(X). By adjunction, we know that

. :Maph, Se (A‘,R(X)) Map
n,%

sYpaceSt,

where AX for k = (ki,...,ky) is the n-fold simplicial set represented by [k;] x --- X [k,] € A*", and
Map” denotes the derived mapping space.

We will now find an explicit way to compute R(X) by finding cofibrant replacements of L(A%). We
start by recalling certain strict n-categories of the desired shapes, which are all objects in Joyal’s
category ®, [Rez10].

Fork = (ki,...,ky,), let ©° be the walking k-tuple of n-morphisms which is the strict n-category from
[JES17, Definition 5.1]. We do not want to recall the full definition here, but rather the intuition:

« Fork = (1,0,...,0), the category OF = o> o is the walking 1-morphism.
* Fork = (2,0,...,0), the category OF = o> e >eis the walking composable pair of 1-morphisms.

. > o AN AN . .
For k = (2,1,...,0), the strict 2-category © \1}2‘ \1}} is the walking horizontally

composable pair of 2-morphisms.
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« Fork = (3,2,...,0), we have the strict 2-category OF =+ R ° . .

* More generally, for k = (ki,...,ky), the strict n-category ©° has k; - - - k, n-morphisms which
are composable following the pattern of a grid of dimension kj X - - - X ky,.

The elementary building blocks for these categories are @), where (n) = (1,...,1,0,...,0). All
——

n
others are built by gluing these in a grid of of dimension kj x - - - x k,,. In [BSP21] Barwick—Schommer-Pries
use the following definition, which can been easily seen to be equivalent to the one in [JES17] by
induction:

Definition 1.3.24. Let C! be the walking 1-morphism, i.e. the category with two objects and one
non-identity morphism from one object to the other, C! = {e—>e}. The strict n-category oM is
defined inductively by the pushout square

(0,1} x@=) 5 ¢l x @1

! |

0,1} x {#} —— OW.

Note that this immediately implies the existence of a surjective “collapse” map ¢, : C" — @),
where C" = (C')*" is the walking n-morphism as a strict n-uple category.

The n-fold nerve of OF is
¢ levelwise fibrant (because @% is discrete).
* a Segal space (because OF is a strict n-category).
» complete (because @% is reduced).

Let us thus abuse notation and still write @ for this (complete) n-fold Segal space. Now we can
write the formula for the cofibrant replacement, and therefore the recipe for finding the underlying
n-fold Segal space.

Theorem 1.3.25. Given a n-uple Segal space X, its maximal underlying n-fold Segal space has
levels, for k = (ki, ... ,k,) € (A°P)",

R(X)p = Map , . (OFX).

s.Spacey*

Since ©° is an n-fold cosimplicial object in strict n-categories (see [JFS17]), this defines a (complete)
n-fold Segal space.
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To prove this Theorem, we need to understand what the cofibrant replacement L(A*®) is. The first
step is a tool to compute the right hand expression in the Theorem, namely, an explicit cofibrant
replacement of @,

Proposition 1.3.26. For n = 1, the category ©Y), or rather its nerve, is cofibrant in the projective
model structure SYpaceé’ge. For n > 1, a cofibrant replacement of ®") in the projective model
structure of n-uple Segal spaces sypaceg’ef is given inductively by replacing the pushouts in

the definition by homotopy pushouts and ®"~V by its (inductively already defined) cofibrant
replacement.

Proof. Similarly to Section 1.2.4, we use an argument similar to that in [JES17], Remark 3.4., which
observes the following: @ is given by a strict pushout along a diagram of cofibrant objects of
which one arrow is an inclusion. By [Lur(09a, A.2.4.4], this is a homotopy pushout in the injective
model structure and therefore homotopy equivalent to the homotopy pushout in the projective model
structure. So a cofibrant replacement of @) is given by taking the homotopy pushout of the same
diagram,

{0,1} xC! —«— (?

Lo |

4

{0,1} x {#} —— cof(@®)

Now we proceed by induction. Assume we have shown the statement for k£ < n and we have a
cofibrant replacement cof(®¥)) given as in the Proposition. Then, since the map {0,1} < C!is a
cofibration in the projective model structure, the map {0, 1} x cof(@"~1) < C! x cof(@~1) is
a cofibration. Moreover, {0, 1} x cof(@""—1)), C! x cof(®*~1), and {0, 1} x {#} are all cofibrant,
so we can use the above-mentioned [Lur09a, A.2.4.4], again to see that the strict pushout, which is
weakly equivalent to 0" isa homotopy pushout, and moreover cofibrant. Summarizing, it is a
cofibrant replacement of ® (). O

Remark 1.3.27. Similarly, we can obtain cofibrant replacements for OF as defined in [JES17] by
replacing the pushouts in the definition by homotopy pushouts.

The remaining ingredient in the proof of the Theorem is the following Lemma.

Lemma 1.3.28. The natural map AF 5 OF is a weak equivalence in 5. pace’f ‘o

Proof. We need to show that for any fibrant object Y in 5. paceif* the induced map Mapi’e paces, (e~ y) —
Mapi’ e, (A%, Y) is a weak equivalence of simplicial sets.
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We show the claim for k = (k) proceeding by induction using the explicit cofibrant replacement
from the previous Proposition. For k = 1, this is true, since @) = A(D = Al Assume we have
proven the statement for / < k. Then

~ h
Map"(@®) y) =Map”(C!' x @1 y) X Map”({0,1},Y)
Map" ({0,1} x@¢*=1)y)

~ Map”(C' x @*1 y)
~ Map"(©@% 1) Hom(C',Y)).

Here the first equivalence uses that the cofibrant replacement of ©®®) is the homotopy pushout as
described in the previous Proposition, the next equivalence computes the mapping spaces on the
right and below the times symbol, the third equivalence uses essential constancy of Y, i.e. condition
(i) in Definition 1.3.4, and the last one uses that n-fold Segal spaces are Cartesian closed.

By the induction hypothesis, the natural map A *=1) — ®*=1) jnduces an equivalence
Map"(©*~1 Hom(C',Y)) = Map"(A*~D Hom(C",Y)) ~ Map"(A®,Y) ~ ¥,.

A similar argument works for general k. O

Remark 1.3.29. The above Lemma is equivalent to the observation that the model structure
sYpaceff* can be obtained as the left Bousfield localization of s.%pace,” along A* — ©*.

Proof of Theorem 1.3.25. The following equivalences are compatible with the cosimplicial structure
of A® and ©°:

-

R(X); = Map” (AF,R(X)) ~ Map" (L(4%),X)

=

Lemmal.3.28 Maph (L(@k),X) ~ Maph(@z,X) .

>~

O]
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Section 2.1
The complete n-fold Segal space of closed intervals

In this section we define a complete Segal space Int, of closed intervals in R which will form the
basis of the n-fold Segal space of bordisms. It will be a tool to record where (in the time direction)
the bordisms can be cut. In particular, there will be a forgetful functor from bordisms to these closed
intervals. We start by defining an internal category of closed intervals in R, whose nerve will give a
complete Segal space of certain tuples of closed intervals. However, for our model of the bordism
category, to avoid having to deal with manifolds with corners, we will instead want to interpret the
tuples of intervals as being closed in an open interval of finite length (instead of R). This will be
explained in 2.1.3. Finally, we could have chosen that open interval to always be (0, 1) and thus
fix the “length” in the time direction of the bordism and its collars to be 1. This choice requires
rescaling and will be explained in 2.1.5.

2.1.1 Int® as an internal category

We first define a category internal to topological spaces Jnt, which gives rise to a strongly Segal
internal category Int® of closed intervals in R.

The topological space of objects of Jnt, is
Jnt§ = {(a,b) :a < b} c R? .1.1)

with the standard topology from R?. We interpret an element (a,b) € Jnt{ as the closed interval
I = [a,b]. This interpretation gives a bijection from the set of points of the topological space Jnt;
to the set of closed bounded intervals:

Jnty «— {closed bounded intervals I = [a,b] in R with non-empty interior}

which we use as an identification. In fact, Jnt is a submanifold of R? and to get the desired Kan
complex Inty, we take smooth singular simplices (see e.g. [Leel3]), i.e. for [ > 0, the [-simplices
are pairs of smooth maps a,b : |A!|, — R such that a(s) < b(s) for every s € |A!|,. Faces and
degeneracies are the usual ones. We view such an /-simplex as a closed interval bundle and denote

it by [a,b] — |A], or (I(s))sejar, = (a(5),b(s))sejar),-

The topological space of morphisms of Jnt, is
Int§ = {(ao,a1,bo,b1) 1 a; < b; for j=0,1, and ap < ay,by < b1}  R*, (2.1.2)

again with the standard topology from R*. Now we interpret an element (ao,a1,bo,b1) € Int{ as a
pair of ordered closed intervals Iy < I}, where Iy = [ag,bo] and I = [a1,b;]. Here “ordered” means
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that ag < a; and by < b;. This gives an identification of the points of the topological space with
certain pairs of intervals:

Int{ «— {lh <1 = [aj,bj] witha; <bjfor j=0,1, and ap < ay,by < by}.

As above Jnt§ has the structure of a submanifold of R* and by taking smooth singular simplices
we obtain a Kan complex Int{ whose /-simplices now are quadruples of smooth maps ag,ar,bo,b; :
|A!], — R such that a;(s) < b;(s) for j = 0,1, ao(s) < ai(s), and by(s) < by (s) for every s € |Al],.
We view such an [-simplex as a closed interval bundle with two closed subintervals and denote it by
([ao,bo] < [a1,b1]) — |A!|, or (Io(s) < T1(5)) a1,

The face and degeneracy maps
S

Intj @ JInt{
t

arise from forgetting and repeating an interval, respectively:
S [ao,bo] < [alabl] — [aO,bO]a

t: [ao,bo] < [a1,b1] — [a1,b1],
and

d:|a,b] — |a,b] < [a,b].

Composition is given by remembering the outer intervals:

([ao, bo] < [a1,b1]) o ([a1,b1] < [a2,b2]) = ([ao, bo] < [a2,b2]).

Here s,¢, and d are smooth maps, so Jnt‘ is a category internal to manifolds. Thus, when taking
smooth singular simplices to get Int¢, all above assignments are well-defined for /-simplices as
well and commute with the faces and degeneracies. Moreover, s and ¢ are fibrations since they are
restrictions of projections.

Remark 2.1.1. Note that even though we like to think of the /-simplices in Intg and Int{ as “closed
interval bundles”, we do not treat them as such: face and degeneracy maps are not defined to be
pullbacks of the bundles, which would only be defined up to isomorphism; instead, they are defined
explicitly at the level of spaces to ensure that simplicial functoriality holds.

Summarizing, we obtain
Lemma 2.1.2. Int¢ is a strongly Segal internal category ',

Moreover, the spaces of objects and morphisms are contractible:

[IA strongly Segal internal category is a category € = (6y, %) internal to .¥ = Space C s.et such that the source
and target maps s,t : 41 — % are fibrations of simplicial sets.
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Lemma 2.1.3. Intj ~ Int] ~ .

Proof. The underlying topological space is contractible as a subspace of R?*, so the associated Kan
complex given by taking smooth simplices is also contractible. O

2.1.2 Int® as a complete Segal space

We defined Int€ as a strongly Segal internal category in the previous section. Its nerve is a Segal
space Int; = N(Int“), (abuse of notation). Let us spell out this Segal space in more detail to become
more familiar with it.

For an integer k > 0, let

Inty = {(a,b) = (ao,...,ax,bo,...,bx) :aj < bjfor 0 < j <k, and

(2.1.3)
aj1<ajandb;_; <bjfor 1 < j<k}cR*

with the subspace topology. As above, one can extract Kan complexes Int; by taking smooth
simplices. Note that for k = 0,1 this coincides with (2.1.1) and (2.1.2) above. As before, we
interpret an element (a,b) as an ordered (k + 1)-tuple of closed intervals [ = Iy < --- < I with left
endpoints a; and right endpoints b; such that /; has non-empty interior. By “ordered”, i.e. I; < I,
we mean that the endpoints are ordered, i.e. a; <ajy and b; < by for j < j.

Spatial structure of the levels The spatial structure of a level Int; comes from taking smooth
singular simplices of the submanifold of R?*. Thus, an /-simplex consists of smooth maps

|Al|e —R, s—a;(s),bj(s)
for j = 0,...,k such that for every s € |A|,, the following inequalities hold:
ai(s) < bi(s), fori=0,....k
)

ai—1(s) < a(s

, and
bi—1(s) < bi(s) fori=1,...,k.

We denote an [-simplex by (Ip < --- < I) — |Al|, or (Ip(s) < --- < Ik(5))e|a1) and call it a closed
interval bundle with (k + 1) subintervals.

For a morphism f : [m] — [[] in the simplex category A, i.e. a (weakly) order-preserving map, let
|f] : |A™|. — |A"|. be the induced map between standard simplices. Let f4 be the map sending an
I-simplex in Int{ to the m-simplex in Int{ given by precomposing with |f],

fA : (Io(S) <0< Ik(s>)S€‘Az (IO(’f‘( )) <Ik(’f’( ))se|Am|g'
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Notation 2.1.4. We denote the spatial face and degeneracy maps of Int; by d]A and s]A- forO<j<L.
The following Lemma is a straightforward generalization of Lemma 2.1.3.

Lemma 2.1.5. Each level Int} is a contractible Kan complex.

Simplicial structure — the simplicial space Int; By construction, since Int® was strongly Segal,
its nerve is a functor Int; : A°? — .#pace. Let us recall that to a morphism g : [m] — [k] in A, it
assigns

g*
Inty, — Int,,

(o(s) < -+ < h(8))sear, — (o) (8) < <Lg(m)(9)))sejary, -

One could alternatively see this directly by observing that the assignment is clearly functorial and
f4 and g* commute for all morphisms f, g in A.

Notation 2.1.6. We denote the simplicial face and degeneracy maps by d; and s; for 0 < j < k.

Explicitly, they are given by the following formulas. The jth degeneracy map is given by doubling
the jth interval, and the jth face map is given by deleting the jth interval,

Sj d;
Int; —]>Intk+1, Int; —j>IIltk_1,
< <hr—lh<- <L << <, IO<“'<Ik'—’10<"‘<ij<"‘<lk-

The complete Segal space Int{

Proposition 2.1.7. Int{ is a complete Segal space. Moreover, the inclusion * — IntS given by
degeneracies, where = is seen as a constant complete Segal space, is an equivalence of complete
Segal spaces.

Proof. We have seen in Lemma 2.1.5 that every Inty is contractible. This ensures the Segal condition,
namely that

~ h h
Int; — Int{ x --- x Int{,
Intg Intg
completeness, and ensures that the given inclusion is a level-wise equivalence. O
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2.1.3 The internal category or complete Segal space Int of ordered closed intervals
in an open one

We now change our interpretation of the spaces (2.1.3): we do not identify them with the spaces of
ordered closed bounded intervals Iy < --- < [; anymore, but as ordered intervals which are closed in
(ao,by), i.e. we interpret the elements as

where I; = I; n (ao,by) for 0 < j < k. Thus, in the generic case when a; # ag for 0 < j < k and
bj # by for 0 < j <k, then I) <--- < I are the half-open or closed intervals

(ao,bo] < [a1,b1] <--- < [ag—1,be—1] < [ax,bx)-

If we view the elements in (2.1.3) in this way, we will denote the internal category (or analogously
the Segal space) by Int.

Note that the identity gives an isomorphism of complete Segal spaces describing the change of
interpretation:

Int; — Int;,
(< <k)— (< <),

where I; = I; N (ag, by) for j =0,...,k. Conversely, I; = clg([}), the closure of I; in R.

Definition 2.1.8. Let
Int; .= (Int,)™".

We denote an element in Int, , by
1s-eesKn

NI

=(@b) = (Iy < <Ij)i<i<n-

Lemma 2.1.9. The n-fold simplicial space Int, _, is a complete n-fold Segal space. Moreover, the
inclusion » — Inty _, given by degeneracies, where x is seen as a constant complete Segal space,
is an equivalence of complete n-fold Segal spaces.

Proof. The Segal condition and completeness follow from the Segal condition and completeness
for Int,. Since every Int; is contractible by Lemma 2.1.5, (Int,)*" satisfies essential constancy,
so Int" is a complete n-fold Segal space. It also ensures that the given inclusion is a level-wise
equivalence. 0
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2.1.4 The boxing maps

We will need the following maps for convenience later:
Definition 2.1.10. Fix k£ > 0. The map of spaces

B : Int; — Intg
I=(lp<---<I)—|A"l.—> B(I) = B(a,b) = (ao,bx) — |A"].

is called the boxing map.

Its n-fold product gives, for every ki,...,k, > 0,amap B: Intj;
to the (family of) smallest open box(es) containing all intervals,

x, — Intg which sends an /-simplex

I= (I < <I})1<ien — |A'le —> B(D) = B@DB) = (ab.bh) x -+~ x (a, b, ) — |A..

We will usually view the total space of B(I) — |A!], as sitting inside R" x |A’|, as Uselat, B(I(s)) x
{s}.

We will also require the following rescaling maps.

Definition 2.1.11. For an element [ € Int} . let p(I) : B(I) — (0,1)" be the restriction of the
product of the affine maps R — R sending af) to 0 and bfc to 1. We call it the box rescaling map.

2.1.5 A variant: closed intervals in (0, 1)

One might prefer to restrict to intervals which lie in (0, 1), modifying the definition to

Int,io’l) ={(a,b) = (ao,...,ak,bo,...,bk):aj <bjforO0< j<k,0=ap<a <--<a
and by < - <bp_1 < b =1} c Int

The simplicial structure now has to be modified to ensure that the outer endpoints always are 0 and
1. This is provided by composition with an affine rescaling map: Let g : [m] — [k] be a morphism
in A. Then, let

*
)

(IO < - <Ik) — |Al|e — pg(lg(()) < - <Ig(m)) - |Al’ea

where the rescaling map p, = p(/,

0(0) < 0 < Ig(m)) is the unique affine transformation R — R
sending a, (o) to 0 and by, to 1.
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Lemma 2.1.12. IntEO’l) is a complete Segal space.

Proof. The only thing which is not completely analogous to Int is checking that it is a simplicial

space. Given two maps [m] % [k] 5 [p], and Iy < --- < I, the rescaling map pz., and the

composition of the rescaling maps pz o pg both send @goq(0) to 0 and bz, to 1 and, since affine
transformations R — R are uniquely determined by the image of two points, this implies that they

coincide. Thus, this gives a functor A?? — .#pace. ]

Note that the degeneracy maps are the same ones, given by repeating an interval. However, the face
maps need to modified: after deleting an end interval we have to rescale the remaining intervals
linearly to (0, 1). Explicitly, for j = 0, the rescaling map is the affine map py sending (a;,1) to
(0,1), po(x) = =g+ and for j = k, it is the affine map py : (0,bk—1) — (0,1), pi(x) = 5>~ Then,

T 1o

d;
Int,(co’l) — Int;(&ll),
IO<<IA/<<II(7 ]#Oakv
h<-<h — 058 <-<[9=2,1), j=0,

(Oabfigl]<<[zz::al)v .]:k

Remark 2.1.13. An advantage of this “reduced” version is that the space of objects is just a point:
for k = 0, the condition on the endpoints of the intervals becomes ay = 0 and by = 1, so the only
element is (0,1) € Inty. In particular, Inty is discrete.

Remark 2.1.14. Note that the boxing maps applied to Int,({o’l)

always have that B(I) = (0, 1). Moreover, Int,EO’l) is the preimage of (0, 1) under the boxing maps.

Finally, note that the simplicial structure is defined exactly as the composition

*
Int,(f)’l) LR Int; LN Int,, LR Int,(,?’]),

are trivial: for/ = Iy < --- < I}, we

where p : I — (p(I)) (I) consists of applying the box rescaling maps. Moreover, since p ot = id,
the diagram

_P L (00)
Inty 7—— Int,
1

-
Int,, L> Intg,(,) 1)

commutes and shows that the simplicial structure is defined exactly in a way to ensure that we a
natural transformation of simplicial spaces

p:Int— Int(o’l),

which is a weak equivalence of complete Segal spaces.
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Section 2.2
The (0, d)-category of n-bordisms

In this section we define an d-fold Segal space PBord,(lnfd)’V in several steps. By applying the Rezk

completion functor we obtain a complete d-fold Segal space, the (o0, d)-category of n-bordisms

PBord,(ln_d)’V. Before we start, we consider the following setup.

Setup. Let V be a finite-dimensional vector space. We first define the levels relative to V with
elements being certain submanifolds of the vector space V x R? ~ V x B, where B is an open box,
i.e. a product of d bounded open intervals in R. Then we vary V, i.e. we take the limit over all
finite-dimensional vector spaces lying in R®. The idea behind this process is that by Whitney’s
embedding theorem, every manifold can be embedded in some large enough vector space, so in the
limit, we include representatives of every n-dimensional manifold. We use V x B instead of V x R¢
as in this case the spatial structure is easier to write down explicitly.

2.2.1 The sets of 0-simplicies of (PBordﬁ,"_d)’V) Koy
The intuition behind the following definition should be the following. An element (i.e. O-simplex)
in the space (PBord,(ffd)’V) 1,....1 should be an d-fold bordism, i.e. a manifold for which there are d
“time” directions singled out and whose boundary is decomposed into an incoming and an outgoing
part in each of these time directions. This is a picture of a simple example for d = 2.

/— time 1
(n—d),V

An element in the space (PBord,, )ki.....k, should be an d-fold bordism, which is the composition
of k| bordisms in the first “time” direction, k, bordisms in the second “time” direction, and so on.

time 2
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This is a picture of an example forn =2,d =2 and k| = kp = 2.

5‘!
=

The pictures both depict the bordisms as embedded into R times the two time directions. We would
like to point out that the “time” directions have a preferred ordering, as we will discuss in more
detail later.

More generally, we will choose the bordisms to be equipped with an embedding into some finite
dimensional real vector space V times d “time” directions, which we single out to track where the
bordism is allowed to be cut into the individual composed bordisms. Furthermore, to keep track of
the “cuts”, we need to remember the data of the grid in the “time” directions.

In practice, we will keep track of little intervals surrounding the grid instead of the grid itself. This
should be thought of as remembering little collars around the cuts rather than the cuts themselves.

FFT
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We will explain how to recover the cuts and how to interpret the following definition in the example
and remark right after the definition.

Notation 2.2.1. For S C {1,...,d}, denote the projection from R¢ onto the coordinates indexed by
Sby 75 : RY — RS,

We will now define the sets of 0-simplices of (PBord,(,nfd)’V) ki....k, and denote them by (}P’Bordf,"fd)’v) k

to avoid adding an extra index.

Definition 2.2.2. Let V be a finite-dimensional R-vector space, which we identify with some R".

(Yl—d),V)

For every d-tuple ki, ...,k; = 0, let (PBord, ki,...k; b€ the collection of tuples

(M= (< <[ )i<i<a),
satisfying the following conditions:

(1) For1 <i<d,
(i< <I)elnt,.

i

(2) M is a closed and bounded n-dimensional submanifold of V x B(I) and the composition
m:M —V x B(I) — B(I) is a proper map."!

(3) Forevery S < {1,...,d}, let ps : M = B(I) => RS be the composition of 7 with the projection

Tts onto the S-coordinates. Then for every 1 <i<d and 0 < j; <k;, atevery xe p 5}1 (Iji), the
map py; . gy is submersive.

iy
:

[
[N al 4y Jo, a2l t Jby

Figure 2.1: An element of (IP’Bordé'V) )

[bIRecall the boxing map from Section 2.1.4.
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()

| D
)

(] [ ] [ ] [
ao\ o |bo a1y |b ax[ ty [by az[ ty Jbs

Figure 2.2: An element of (PBord;V%

Remark 2.2.3. For ky,..., kg = 0, one should think of an element in (PBordSl"_d)’V)khwkd as a
collection of ki ---k; composed bordisms, with k; composed bordisms with collars in the ith
direction. They can be understood as follows.

* Condition (3) in particular implies that for every 1 <i < d, at every x € p;}l (I;), the map
pyiy is submersive. So if we choose 7} € I, it is a regular value of py;, and therefore p{_l}1 ()
is an (n — 1)-dimensional manifold. The embedded manifold M should be thought of as
a composition of n-bordisms and p;; (tj) is one of the (n — 1)-bordisms (or a composition
therof) in the composition.

¢ For any t;l_l € 17 ~and tld_l € Ild_l, there is an inclusion of the preimages
-1 d—1 .d —1 d—1
Pra—14} ((tj )1 )) Cp{dil}(lj )s

and by condition (3) the map p(;_ 4y is submersive there. Therefore p;il_] a) ((t;i*l,tld )) is

an (n — 2)-dimensional manifold, which should be thought of as one of the (n — 2)-bordisms

which are connected by the composition of n-bordisms M. Moreover, again since py_1 4} is
1!

submersive everywhere in p@il_l}( F

), a variant of Ehresmann’s fibration theorem shows
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that the preimage p{_dl_l} (t? ~1 is a trivial fibration and thus a trivial (n — 1)-bordism between
the (n — 2)-bordisms it connects.

I

e Simi k d k . d :
Similarly, for (£ 19) €I} x - x I , the preimage

o
1 k d
Plk...ay <(tjk’ e de))

is a (k — 1)-dimensional manifold, which should be thought of as one of the (k — 1)-bordisms
which is connected by the composition of n-bordisms M.

2.2.2 Construction of the topological space (38 ora,(,"*d)’v) k

Definition 2.2.4. Let ¥(V x (0,1)9) be the set of subsets M = V x (0,1)? which are smooth,
bounded n-dimensional submanifolds without boundary, and such that M is closed as a subset.

Step 1. We first define the compactly supported topology on ¥(V x (0,1)4). We will write
Y(V x (0,1)%) for ¥(V x (0,1)?) equipped with this topology. In fact, ¥(V x (0,1)4)** will be
an infinite-dimensional smooth manifold, in which a neighbourhood of M € ¥(V x (0,1)4)* is
homeomorphic to a neighbourhood of the zero-section in the vector space I.(NM) consisting of
compactly supported sections of the normal bundle NM of M =V x (0,1).

Construction 2.2.5. Let C°(M) denote the set of compactly supported smooth functions on M.
Given a function € : M — (0,00) and finitely many vector fields X = (X;,X5,...,X;) on M, let
B(g,X) denote the set of all functions such that |(X1X;...X,f)(x)| < &(x) for all x. Declare the
family of sets of the form f + B(g,X) a subbasis for the topology on C (M), as f ranges over
CX(M), € over functions M — (0,00), and X over r-tuples of vector fields, and r over non-negative
integers. This makes C°(M) into a locally convex vector space.

We define the normal bundle NM to be the subbundle of €" which is the orthogonal complement
to the tangent bundle TM < €". This identifies I.(NM) with a linear subspace of CZ°(M)®". We
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topologise it as a subspace.

By the tubular neighbourhood theorem, the standard map NM — R restricts to an embedding of
a neighbourhood of the zero section. Associating to a section s its image s(M) gives a partially
defined injective map

L(NM) -2 (v x (0,1)%)
whose domain is an open set. Topologise ¥(V x (0,1)4)* by declaring the maps ¢y to be

homeomorphisms onto open sets. This makes ¥(V x (0, 1))* into an infinite dimensional manifold,
modelled on the topological vector space I.(NM).

Step 2. For each compact set K Z V x (0,1)4, we define a topology on ¥(V x (0,1)%), called the
K-topology. We will write ¥ (V x (0,1)%)X for ¥(V x (0,1)?) equipped with this topology.

Construction 2.2.6. Let
P(U)* S @K CU)

be the quotient map that identifies elements of ¥ (V x (0,1)?)* if they agree on a neighbourhood of
K. The image of a manifold M € ¥(V x (0,1)4)* is the germ of M near K, and we shall also write
g (M) = M|g. Give W(K Z V x (0,1)?) the quotient topology.

Now, let ¥(V x (0,1)4)X be the topological space with the same underlying set as ¥(V x (0,1)%),
and with the coarsest topology making 7x : ¥(V x (0,1)9)X — ¥ (K <V x (0,1)) continuous. It
is a formal consequence of the universal properties of initial and quotient topologies that the identity
map ¥ (V x (0,1)%)L — ¥(V x (0,1)%)X is continuous when K < L are two compact sets. That is,
the L-topology is finer than the K-topology.

Step 3. Finally, let ¥(V x (0,1)¢) have the coarsest topology finer than all the K-topologies. In
other words, W(V x (0,1)?) is the inverse limit of ¥(V x (0,1)?)X over larger and larger compact
sets.

Now, we identify the topology on ¥(V x (0,1)?) with the quotient

Sub(V x (0,1)%) <= | |Emb(M,V x (0,1)¢)/Diff(M),
[M]

where the coproduct is taken over diffeomorphism classes of n-manifolds. It is given by defining the
neighborhood basis at M to be

(NcVx(0,1):NnK=jM)nK,jeW},

where K < V x (0,1)? is compact and W < Emb(M,V x (0, 1)) is a neighborhood of the inclusion
M <V x (0,1)? in the Whitney C*-topology. Thus we obtain a topology on

Sub(V x (0, l)d) X Jntflwkd,
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where we view Jntflwkd as a (topological) subspace of R? asin 2.1.1.

(0,1)4. Then we identify an element (M,]) € (BB I ’V) k1,...k, Whose underlying submanifold
is the image of an embedding t : M — V x B(I) with the element ([p(I) o1],p(I)) in the above

space. This identification gives an inclusion
(BBordy" )i, g, = Sub(V x (0, 1)) x Int .

which we use to topologize the left-hand side.

The Kan complex (PBord{" "),

7'“:kd

To model the levels of the bordism category as spaces, i.e. as Kan complexes, we can start with
the above version as a topological space and take singular simplices of this topological space.
However, smooth maps from a smooth manifold X to ¥(V x (0,1)) are easier to handle. By
Lemma 2.18 [GRW 10], every continuous map from a smooth manifold, in particular from |A’|,, to

(‘B%otb,(,n_d)’v)kl ...k, can be perturbed to a smooth one, so the homotopy type when considering
smooth singular simplices does not change.

We will first give a very explicit description of the Kan complex (PBordfln_d)’v)kl,...,kd.

Definition 2.2.7. An /-simplex of (PBord,(,"_d)’v)kl k, consists of tuples

goeoy

(M,I(s) = (I(s) < - < T (5))sepan,
such that

(1) I= (I} < <I )i<ica — |A"|. is an [-simplex in Inti1 L

i seeikd’?
(2) M is a closed and bounded (n +[)-dimensional submanifold of V x B(I(s))cja1, €V x RY x
|A!|, such that!®!

(a) the composition 7 : M < V x B(I(s))e|at|, = B(L(5))se|at|, of the inclusion with the
projection is proper,

(b) its composition with the projection onto |A’|, is a submersion M — |A!|, which is trivial
outside |A!| < |A!|,, and

(3) for every S < {1,...,d}, let ps : M 5 B(I(5))seiar, © R? x |Al] 25 RS x |A!|, be the
composition of 7 with the projection 75 onto the S-coordinates. Then for every 1 <i < d and
0<ji<kyateveryxe pg}l(UselMelj-i(s) x {s}), the map py; 4 is submersive.

ERRER)

[(IRecall that we view the total space of B(I) — |A!|, as sitting inside RY x |A?|, as Usejar), BU(s)) x {s}.
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From the Definition of smooth map in [GRW 10, Definition 2.16, Lemma 2.17] we immediately get:

(n—d),V (n—d),V

Lemma 2.2.8. An [-simplex of (PBord, )ky.....k, 18 exactly a smooth I-simplex of (PBord, )k

Remark 2.2.9. Note that for [ = 0 we recover Definition 2.2.2. Moreover, for every s € |A!|, the

fiber My of M — |A!|, determines an element in (PBord,(,"fd)’V) ki,

(My) = (M =V x B(I(s)),L(s))-

We will use the notation 7, : My — B(I(s)) for the composition of the embedding and the projection.

Remark 2.2.10. The conditions ((2)a), ((2)b), and ((3)) imply that M — |A/|, is a smooth fiber
bundle, and, since |Al | is contractible, even a trivial fiber bundle. The proof is a more elaborate
version of the argument after Definition 2.6 in [GTMWO09].

We now use the simplicial maps of the space IntfI ...k, to explain those of (PBordSl"_d)’V) ki

Definition 2.2.11. Fix k > 0 and let f : [m] — [/] be a morphism in the simplex category A. Then
let |f|: |A™|, — |A!|, be the induced map between standard simplices.

Let f4 be the map sending an [-simplex in (PBord,(,"_d)’V)kl ...k, to the m-simplex which consists of

(1) for 1 <i < d, the m-simplex in Int;, obtained by applying 4,
fA <(I(l)(s) < e < I]ij(s))SE‘Al‘e) = (I(l)(|f‘(s)) < e < I]i,‘(‘f|(s)))se‘Am‘g7

(2) The (n+ m)-dimensional submanifold fAM <V x B(I(s)) se|an|, obtained by the pullback of
M — |A!|, along | f|. Note that its fiber at s € |[A™|, is (f*M); = Miy|(s) and

Fou = | Mg x s}

selAm],

The above assignment is indeed well-defined since the underlying assignment for the underlying
intervals is well-defined and since the map | f| is a submersion, the pullback of M — |A!|, along | f| is
also a submersion. Moreover, the assignment is functorial, since pullback commutes contravariantly
with composition, and thus (PBord,(,"_d)’V)kh“ k, is a simplicial set.

.

Proposition 2.2.12. (PBord,(,nfd)’V)khm’kd is the smooth singular space of (‘B%Otb,(,nfd)’v)khwkd.

In particular, it is a space.

Proof. By definition the simplicial maps f2 are induced precisely by the maps |f] : |A™|, —
|Al‘e- [
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Notation 2.2.13. We denote the spatial face and degeneracy maps of (PBord,(q"_d)’v) ki

andsJA- forO0<j<l.

sy

Example 2.2.14. We now construct an example of a path. It shows that cutting off part of the collar
of a bordism yields an element which is connected to the original one by a path.

cutting off a short enough piece in the ith direction at an end of an element of (PBord,(ffd)’V) Ky ooy
leads to an element which is connected by a path to the original one. Fix 1 <i<d andlet & < bf) — aé.

Choose a smooth, increasing, bijective function [0, 1] — [0, €], s — &(s) with vanishing derivative
at the endpoints.

For0< j<kandse[0,1] = |A!|, let
Ii(s) = (ap +£(s),bj,) N I,

and then B(I(s)) = (af + £(s), b} ) = B(I). For s <0 and s > 1 let the family be constant. Then let
M (€) be the preimage of the subset [ i 1), B(s)) x {s} < B(I) x |Al|, of M x |AY], — B(I) x
|A!|., i.e. the submanifold

(
| |

M(g) ———— M x |Al],
Uselary, BU(s)) x {s} —— B(I) x |A'].

Then (M(€),1(s)) is a 1-simplex in (PBord,(,"_d)’V)klwkd with fibers M(g), = pg}l ((af)+&(s),b})).

Remark 2.2.15. In the above example we constructed a path from an element in (PBordS,"_d)"V) Kiseka

to its cutoff, where we cut off the preimage of pi_1 ((af), g]) for suitably small €. Note that the same
argument holds for cutting off the preimage of p; ' ([bf{l_ -9, b};i)) for suitably small §. Moreover,

. .. . g . . bl —al bl —a.
we can iterate the process and cut off &;, §; strips in all i directions. Choosing & = 02% , 0, = b 3 b

yields a path to its cutoff with underlying submanifold

d

L+ bl ap, + b,
cut(M)zﬂ_l<H(a02 0 k[2 k’)).
i=1
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2.2.3 The n-fold simplicial space (PBord,(l”_d)’V). e

We make the collection of spaces (PBord,(ln_d)’V).7_“7. into an d-fold simplicial space by lifting the

simplicial structure of Intffﬂ,. We first need to extend the assignment

(], Tha) > (PBordi™ V), _y,
to a functor from (A°P)?.

Definition 2.2.16. For every 1 <i<d, let g; : [m;] — [k;] be a morphism in A, and denote by
g = (g;); their product in A4, Then
*
(PBordg,"_d)’V)kh“_’kd £, (PBordfl"_d)’V)m1 77777 my-

applies g7 to the ith tuple of intervals and perhaps cuts the manifold. Explicitly, on /-simplices, g*
sends an element

(M <V x BU(s))sepa, - L(s) = I(s) < .. <L, (s))Ly)
to

("M = 1 (B("L(5))erar,)) © V X BAS))serao8* (D(s) = (Lgy(5) < o <L (5))1),

where 7 : M <V x B(I(s))se|at|, = B(L(5))se|ar|,- Note that (g*M), = g* M.

e e

Note that as the manifold g*M is the preimage of the new box, we just cut off the part of the manifold

outside the new box. This is functorial, as it is functorial on the intervals, and, if g; : [k;] — [k;] and
& = (&), the following diagram commutes by construction:

M 2 &M ) g g'M

| I :

B(I(5))sejar, =2 B(g*U(8))seian, 2 B(E*g"(L(5))seial),

Notation 2.2.17. We denote the (simplicial) face and degeneracy maps by d': (PBord{" ") ky

(PBordSl"_d)’V) Eln_d)"v)kl,....,kd - (PBordSLn_d)’V)kl,4..,k‘~+1

j<ki.

ks for 0 <

7777777777

Notation 2.2.18. Recall from remark 2.2.3 that for ky,...,k; = 0, one should think a 0-simplex
in (PBord,(Z"_d)’V) ki,...ks as a collection of k; - - - k; composed bordisms with k; composed bordisms

with collars in the ith direction. These composed collared bordisms are the images under the maps

D(ji,...,ja): (PBOFdr(zn_d)’v)kl,...,kd — (PBOTdSln_d)’V)L...J
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for (1 < j; < k;i)1<i<q arising as compositions of inert face maps, i.e. D(ji,...,jq) is the map
determined by the maps

d(ji):[1] = [k], (0O<1)— (ji—1<ji)
in the category A. This should be thought of as sending an element to the (ji,..., j;)-th collared
bordism in the composition. Moreover, we will later use the notation

—d),V
yeeka T (PBOI‘d,(ln ) )k|,~~~,17~~~,kd

D'(ji): (PBOngznfd)’V)k

for the maps induced by just d(j;). By abuse of notation, we will denote the submanifold d(j;)*M
by D'(ji)(M).

Proposition 2.2.19. The spatial and simplicial structures of (PBordﬁn_d)’V).,m,. are compatible,

Le. for f:[l] = [p], gi: [mi] — [ki] for 1 <i<d, the induced maps
4 and g*

commute. We thus obtain an d-fold simplicial space (PBord,gnfd)’V).,..’..

Proof. Since Int? is a simplicial space, it is enough to show that the maps commute on the manifold
part, i.e.

g*fAMZng*M.
This follows from the commuting of the following diagram, in which all sides arise from taking
preimages. The preimages are taken over B(g*I(s))se|an|, © B(I(5))sejam|, and |f]:|A™], — 1A,
respectively, which affect different components of V x |, Am\((B(Z(S)) x {s}) cV xR x |A™,,
so they commute.

V x B(I(s))se|am|, >V x B(g*I(5))se|an],
- -7
idx |f| e idx|f]
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2.2.4 The complete n-fold Segal space Bord,,

We will now prove that PBord!"~ "V

space of bordisms.

leads to a pre-(00,d)-category, i.e. a complete d-fold Segal

Proposition 2.2.20. (PBordS,nfd)’V).M. is an d-fold Segal space.

Proof. We need to prove that the Segal condition and globularity are satisfied.

The Segal condition is satisfied. Fix fixed k1, ...,k; = 0. We need to show that for every 1 <i<d,
and k; = m + [, the Segal map

—d),V —d),V h —d),V
Vs (PBord"™ ) g, — (PBord{™ ) i, X (PBordy~ ")y, .
(PBord{"™ " ),..0..4,
is a weak equivalence. From now on we will often omit writing out the indices for o # i for clarity.

Since every level set (PBord,(,n_d)’V) ki....k, 18 a Kan complex by proposition 2.2.12, i.e. fibrant, the

homotopy fiber product on the right hand side can be chosen to be the space of triples consisting of
two points and a path between their target and source, respectively.

Note that an element in this space is given by a triple consisting of
M) =1:McVxB{I),I= (15 <O H <<

(N,J)=(k:NcVxB(J),J= <16< <UL < <J’{/)l ﬁez)’

together with a path /& from the target D'(m)(M,I) (D’( Y(M), I, (Ié < k,)l j<d ﬁg,) of
(M, 1) in the ith direction to the source D'(1)(N,J) (D’(l)(N) Ji, (Jé ka)l j<d Pﬂ) of
(N,J) in the ith direction (using Notation 2.2.18).
The Segal map ¥, ; factors as a composition
m — h —
(PBord" "), — " (PBord{" "),  x  (PBord!" "),
(PBord,(,"_d)'V)o
J I (2.2.1)
(PBord{" Y ymi Py,

as follows: Informally, the lower right hand corner is the subspace of triples for which, for the
directions besides the ith, the tuples of intervals agree and the path of intervals is constant. The
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lower left hand corner is the subspace thereof, for which in addition in the ith direction I,"n = Jé, and
along the path this interval stays constant. We will define these spaces below. Our strategy to prove
that ¥, is a weak equivalence is to show that all three maps are weak equivalences. Here the left
vertical map is the main step of the proof — this is where “composing” the bordisms happens, as
we will see below. That the bottom and right vertical map are weak equivalences follows from a
rescaling procedure. Let us first define the two spaces in question.

For the lower right hand corner, for 1 < j < d and j # i, consider the jth forgetful map

PBord! " — Int, (M,I)— I.

h

The canonical maps from the pullback to the homotopy pullback Int, = Int, x Int, — Int, x Int,
Int, Int,

(which is a weak equivalence since a deformation retract is straightforward to write down and

rescales the second tuple of intervals) for varying j induce a (strict) pullback square

_ h _ _ h
(PBord,(z" d)’v).w_”..m!.m_’. X (PBord,(ln d)’v).,,“,..z,.....,. — Intfyf’i,” X
o PBord" Y )e pene o B e
J IntJ (":1).

The strict pullback of this diagram consists of exactly those pairs whose jth tuples of intervals agree
for every j # i, and is constant along the path (but the embedded manifold can still vary).["!

h
For the lower left hand corner, consider the canonical map Int,, x Int; — Int,, x Int; (which is a
Inty Inty

weak equivalence since both sides are contractible). Now form the (strict) pullback

h
48 1. _ Intmet Int;
nty

T d

(PBord,(,nfd)’V)'.",’.l,,,. — Int,, x Int;.
' Inty

It consists of exactly those pairs whose jth tuples of intervals agree for every j # i and is constant
along the path (but the embedded manifold can still vary), and, in addition, in the ith direction, the
last interval of the first element is the first interval of the second element. /!

[4INote that since the right vertical map is a weak equivalence, if the diagram were also a homotopy pullback diagram, we
would immediately see that the left vertical map is a weak equivalence as well. However, neither map in the diagram is
a fibration (or not even a “sharp map” a la Rezk [Rez98]), so we need to find a different strategy.

[¢] Again, the right vertical map is a weak equivalence, and it would be more convenient to take the homotopy pullback.
However, the same problem appears as in the previous situation.
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The left vertical map in (2.2.1) is a weak equivalence: We first fix once and for all a “smoothed
diagonal” D c [0, 1]%: it is the graph of a map ¢ : [0,1] — [0, 1], which has vanishing derivative in
[0,1] and [%, 1] (we could also chose fixed shorter intervals) and is bijective with smooth inverse in

[§,3], for example

We will use this to define a deformation retract of ¥/ which we suggestively call glue. The
homotopy exhibiting the deformation retract will use the following two modified functions for
7€ [0,1]. Let

s _

St

Then for T = 1 we have that ¢ = ¢ = ¢j, and for T = 0 we have ¢} = 0 and gj = 1. Moreover, for
every T, both ¢J and ¢! are smooth and bijective onto its image. These give “flatter”” diagonals Dj ¢
and D ;.

7-¢ and ¢l=1+7-(c—1).

Q

.

W —

0| —f

Recall from above that an element in (PBord,gnfd)’V)’."’il”’. is given by a pair (M,I) and (N,J) and a

path & from the target of the former to the source of the latter, along which the interval is constant.
We will use this path £ to glue the embedded manifolds M and N. A similar argument works for

[-simplices in (PBord,(,n_d) Yy

R N

The 1-simplex % by definition is a submanifold P of!'! V x (¢, b) x |A'|, such that the composition

with the projection 7y;y : P — (c,b) x |A'|, is a submersion. We rescale the fixed smoothed diagonal
D linearly to obtain a smooth diagonal D? in (c,b) x |A'],.

(Ml Actually, of V x (c,b) x B((Ig << I]{j_)léjgdﬁj;gl’) x |AY,.
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Consider the preimage Pyi,g of 7y of DY, Since the projection Ty P — (c,b) x A, is
submersive, a Morse lemma style argument shows that this preimage Fyqq is diffeomorphic to
both D(m)(M) and D(1)(N). Thus we glue the manifolds M and N over Pyjqq to obtain M up,,, N.
We realize it as a submanifold of V x R x (a,d) by using

M=Mx{0} cV x{0}x(a,b) cV xR x (a,d)

N=Nx{1} cVx{l}x(c,d)cV xR x (a,d)

and, using the coordinate in [A!|, = R,
Puigg €V xR x (¢,b) €V xR x (a,d)
. However, note that the extra copy of R introduced above is not necessary: let
D = ({0} x (a,c]) uD*® U ({1} x [b,d)) € R x (a,d).

Then the projection onto the second coordinate induces a diffeomorphism D = (a,d). Thus,
composing the embedding of the submanifold into V x R x (a,d) with the projection onto V x (a,d)
still is an embedding:

Mup,,, N =V x(a,d).

The same construction works for /-simplices: the same argument goes through with (M,I) and
(N,J) now being I-simplices, and thus submanifolds of V x (a,b) x |A!|, and V x (c,d) x |A!].,
respectively, and P a submanifold of V x (c,b) x |A/*1|,. Moreover, since the shape D was chosen
once and for all, this construction commutes with the spatial structure and indeed gives a map of
spaces

glue : (PBord,(zn_d)’v)’"’ . — (PBord,(,"_d)’V).7”,7.7/(1.7.7,“7..

L

We claim that this is a deformation retract of y"!: Indeed, glue o ¥"! is the identity, since the
path between the source and target in the image of Y™/ is constant. As for the other composition
y™! o glue, this sends a pair of elements (or [-simplices) (M,I) and (N,J) together with a path &
from the target to the source to a pair (M,I) and (N,J) which is not the original one (In fact, the
latter pair has a constant path 7). However, there is a homotopy from 7"/ o glue to the identity as
follows: for 7 € [0,1], send (M,I),(N,J),h to the the following pair: modify the above construction
by using D; ¢ and D ¢ instead to obtain Pj;;, and P o+ Now one can glue M with F;;7, and N with
P(;’I.Z . and embed each as above to obtain (M;,I) and (N;,J). A path h; between their target and
source is given by the restriction of P to (i.e. the preimage of) the part between D, ; and D; ;. For
7 = 0 this is the identity map, and for T = 1, this is exactly y"! o glue.

“Rescaling” — the bottom and right vertical maps in (2.2.1) are weak equivalences: Both maps are
part of a deformation retraction. Let us describe the right vertical map first.
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The idea of “rescaling” is illustrated in the following picture forn =2,i=1,/ =m =1, and k; = 2.
Note that we just depict the cutting lines, not the intervals around them. The rescaling is performed
on the right hand piece.

|

The deformation retract is given as follows: we observed above that the canonical map

h
Inty =~ Int, x Int, — Int, x Int,
Inte Inte

level-wise has a deformation retraction. We will lift this to the desired deformation retraction.

An element (or /-simplex) in the right hand side is given by a triple (1,J, /), where h is a 1-simplex
(or (I +1)-simplex) from [ to J, which we denote by / — |A!|,. The later determines a family of
diffeomorphisms B(J) — B(I(s)) and we send a triple ((M,I),(N,J),h) toatriple ((M,I),(Ny,J,).hs),
where (Ny,J,) is given by the composition

syl

NcVxBT)—V xB(s)).

We need the family of diffeomorphisms to have the following property: if for every s € [s, 1], the
cardinality |I;(s) n1j41(s)| is O or 1, then b;(1) — b;(s) and aj;1(1) — aj41(s). Such maps are
easily defined in a piece-wise linear way.

As for the horizontal map, the rescaling in the ith direction, let B(I') = (a,b) and d’, and b'; the
left and right endpoints of [}; and B(J') = (c,d) and ¢!, and d; the left and right endpoints of J;.
Similarly to above, by rescaling (N,J), we can assume that we have rescaled the embeddings and
intervals such that I}, = J§ = (a,,,b) = (c,d;), and along the path this interval stays constant. This

assumption implies the the intervals can be “glued” (or rather, concatenated) to obtain an element in
Intkl..

[ 1 [ 1 [ \
\ ] L ] L /
aéza b6 ai,‘:c b;,:b L'; d

Similarly to above, this can be implemented using a deformation retraction of Int,, x Int; —
Inty

h
Int,, x Int;, which is lifted to one of the inclusion.
Inty
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For every i and every ki,...,k;_, the (d —i)-fold Segal space (PBord,(f_d)’v),r{1 77777 ki 1.0,0, 0 IS

essentially constant. We show that the degeneracy inclusion map

(n—d),V (n—d),v
(PBOl”dn )kl:-‘-7ki7170707~~70 - (PBOI’dn )kla-<-7ki71y07ki+l7-<-:kn

admits a deformation retraction and thus is a weak equivalence.

Consider the assignment sending a pair consisting of ¢ € [0, 1] and an /-simplex

(M =V B (1P (5))12p<i (ah(5), bh(5)), (1*(5))i<aca) ey, )

(l’l*d) 7V)

in (PBOl‘dn Kt yeeeski— 10K 1 sk €O

(M =V xBI(5)), (1P ())1<p<1: (@b (5): Bh(5)) 1 (50 )i<a<a) (et o) )
where for & > i and every 0 < j < kg,

a¥(s.1) = (1— &(1))a%(s) + (t)af (s),

b (s,1) = (1—€(2))bf (s) + &(1)bi, (5)
for a smooth, increasing, bijective € : [0, 1] — [0, 1] with vanishing derivative at the endpoints. This
is a homotopy H : [0, 1] x (PBordX)kl,,,.,ki%o,kiﬂ,_“’kﬂ — (PBordZ)kl‘,_“7,(,.71707;%17_“7/(" exhibiting the
deformation retract'¢!, Note that B(I(s,t)) = B(I(s)) for every t € [0, 1]. Moreover, for t = 0 we have
that 7 (s,0) = I7(s) and the [-simplex is sent to itself. For = 1 we have I¥(s, 1) = (ag(s),bf (s)),
so the image lies in (PBOTd,‘:)k.,...,k,_l,o,o,..,,o-

It suffices to check that for every 7 € [0, 1] the image indeed is an /-simplex in (PBord,‘,/)k1 ki1 0k e
k,» this reduces to checking

Foreveryi< o <dand0< j<kg, atevery xc p{_(;} (Ij‘?‘(s,t)semqg), the map pq. .
is submersive.

Since in the ith direction we only have one interval, we have that pﬁ}l((af)(s),bé(s))sa al,) =
M, so in particular, pg}l((af)(s),bé)(s))sewzh) > p{_O:} (19 (s,1),eja1),)- Therefore, condition ((3))

in 2.2.7 on (M) for i implies, that py; ,, is a submersion in pa((aé(s),bé(s))seM” y=M>

p(;} (I7(s,1) 51, ) SO P{a....n) 18 submersive there as well. O

[£1To be precise, we take 7 € |A!], and extend the assignment so that it is constant outside [0, 1].
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So far the definition of PBordSln_d)’V depended on the choice of the vector space V. However, in the

bordism category we would like to consider all (not necessarily compact) n-dimensional manifolds.
By Whitney’s embedding theorem any such manifold can be embedded into some finite-dimensional
vector space V, so we need to allow big enough vector spaces.

Definition 2.2.21. We define PBordS,"id)’V to be the homotopy colimit of d-fold Segal spaces!™
PBord{" = lim PBord{" " = hocolimycpxs PBord{" """,
VCR®

The last condition necessary to be a good model for the (o0, d)-category of bordisms is completeness,
which PBord,(,nfd) in general does not satisfy. To see why this is consider PBord,,, we observe that

(PBord,)o ~ lim (PBord,,)§ ~ lim R x ¥(V)
VcR® VcR®

is a classifying space for closed manifolds of dimension (n — 1) (this follows from general position
arguments: as the dimension of the vector space V grows, the embedding spaces Emb(M,V)
become highly connected, so the homotopy type of the quotients Emb(M, V) /Diff(M) become
good approximations to the classifying spaces BDiff(M)). By contrast, invertible 1-morphisms
in the homotopy category hPBord,, are given by invertible bordisms between (n — 1)-manifolds.
An invertible bordism B : M — N arises from a diffeomorphism of M with N if and only if B
is diffeomorphic to a product M x [0,1]. If n > 6, the s-cobordism theorem asserts that this is
equivalent to the vanishing of a certain algebraic obstruction, called the Whitehead torsion of B.
Since there exist bordisms with nontrivial Whitehead torsion, the Segal space PBord,, is not complete
for n > 6 [Lur09c].

However, we can pass to its completion Bord,,.
Definition 2.2.22. The (c0,d)-category of n-bordisms Bord" @ is the d-fold completion PBord{"
of PBord,(z"_d), which is a complete d-fold Segal space.

[ Note that the identity map from the model category of d-fold simplicial spaces to the model category of d-fold Segal
spaces is a left adjoint (since it is a localization) and therefore preserves homotopy colimits. Thus, the homotopy
colimit can be computed in d-fold simplicial spaces.

70



Bibliography

[Abro6]

[Bar05]

[BD95]

[Ber07]

[Ber10]

[BK12]

[BM14]

[BR13]

[BR20]

[BSP21]

[CH16]

Leonard S. Abrams. Two-dimensional topological quantum field theories and
Frobenius algebras. J. Knot Theor. Ramifications, 5:569-587, 1996.

Clark Barwick. (co0,n)-Cat as a closed model category. ProQuest LLC, Ann Arbor,
MI, 2005. Thesis (Ph.D.)-University of Pennsylvania.

John C. Baez and James Dolan. Higher-dimensional algebra and topological quantum
field theory. J. Math. Phys., 36(11):6073-6105, 1995.

Julia E. Bergner. Three models for the homotopy theory of homotopy theories.
Topology, 46(4):397-436, 2007.

Julia E. Bergner. A survey of (o0, 1)-categories. In Towards higher categories, volume
152 of IMA Vol. Math. Appl., pages 69—83. Springer, New York, 2010.

C. Barwick and D. M. Kan. Relative categories: another model for the homotopy
theory of homotopy theories. Indag. Math. (N.S.), 23(1-2):42-68, 2012.

Marcel Bokstedt and Ib Madsen. The cobordism category and Waldhausen’s K-theory.
In An alpine expedition through algebraic topology, volume 617 of Contemp. Math.,
pages 39-80. Amer. Math. Soc., Providence, RI, 2014.

Julia E. Bergner and Charles Rezk. Comparison of models for (o0,n)-categories, 1.
Geom. Topol., 17(4):2163-2202, 2013.

Julia E. Bergner and Charles Rezk. Comparison of models for (c0,n)-categories, II. J.
Topol., 13(4):1554-1581, 2020.

Clark Barwick and Christopher Schommer-Pries. On the unicity of the theory of higher
categories. J. Amer. Math. Soc., 34(4):1011-1058, 2021.

Giovanni Caviglia and Geoffroy Horel. Rigidification of higher categorical structures.
Algebr. Geom. Topol., 16(6):3533-3562, 2016.

71



Bibliography 72

[CS19]

[DKS89]

[Ehr63]

[Galll]

[GJO9]

[Gro21]
[GRW10]

[GTMWO09]

[Haul8]

[Hir03]

[Horl15]

[JES17]

[Leel3]

[Lur09a]

[Lur09b]

[Lur09c]

[Ras18]

Damien Calaque and Claudia Scheimbauer. A note on the (co,n)-category of
cobordisms. Algebr. Geom. Topol., 19(2):533-655, 2019.

W.G. Dwyer, D.M. Kan, and J.H. Smith. Homotopy commutative diagrams and their
realizations. Journal of Pure and Applied Algebra, 57(1):5-24, 1989.

Charles Ehresmann. Catégories structurées. Ann. Sci. Ecole Norm. Sup. (3),
80:349-426, 1963.

S¢ ren Galatius. Stable homology of automorphism groups of free groups. Ann. of
Math. (2), 173(2):705-768, 2011.

Paul G. Goerss and John F. Jardine. Simplicial homotopy theory. In Modern Birkhduser
Classics, 2009.

Alexander Grothendieck. Pursuing stacks, 2021.

S¢ ren Galatius and Oscar Randal-Williams. Monoids of moduli spaces of manifolds.
Geom. Topol., 14(3):1243-1302, 2010.

S¢ ren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss. The homotopy type
of the cobordism category. Acta Math., 202(2):195-239, 2009.

Rune Haugseng. Iterated spans and classical topological field theories. Math. Z.,
289(3-4):1427-1488, 2018.

Philip S. Hirschhorn. Model categories and their localizations. 2003.
Geoffroy Horel. A model structure on internal categories in simplicial sets, 2015.

Theo Johnson-Freyd and Claudia Scheimbauer. (Op)lax natural transformations,
twisted quantum field theories, and “even higher” Morita categories. Adv. Math.,
307:147-223, 2017.

John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in
Mathematics. Springer, New York, second edition, 2013.

Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2009.

Jacob Lurie. (00,2)-categories and the goodwillie calculus i. arXiv: Category Theory,
2009.

Jacob Lurie. On the classification of topological field theories. In Current developments
in mathematics, 2008, pages 129-280. Int. Press, Somerville, MA, 2009.

Nima Rasekh. Introduction to complete segal spaces. arXiv: Category Theory, 2018.

72



Bibliography 73

[Rez98]

[Rez01]

[Rez10]

[Riel7]

[Sch14]

[SP09]

[ToS5]

[TVO5]

Charles Rezk. Fibrations and homotopy colimits of simplicial sheaves, 1998.

Charles Rezk. A model for the homotopy theory of homotopy theory. Trans. Amer.
Math. Soc., 353(3):973-1007, 2001.

Charles Rezk. A Cartesian presentation of weak n-categories. Geom. Topol.,
14(1):521-571, 2010.

E. Riehl. Category theory in context. Aurora: Dover modern math originals. Dover
Publications, 2017.

Claudia Isabella Scheimbauer. Factorization Homology as a Fully Extended
Topological Field Theory. PhD thesis, Zurich, ETH, 2014.

Christopher John Schommer-Pries. The classification of two-dimensional extended

topological field theories. ProQuest LLC, Ann Arbor, MI, 2009. Thesis
(Ph.D.)-University of California, Berkeley.

Bertrand Toén. Vers une axiomatisation de la théorie des catégories supérieures.
K-Theory, 34(3):233-263, 2005.

Bertrand Toén and Gabriele Vezzosi. Homotopical algebraic geometry. I. Topos theory.
Adv. Math., 193(2):257-372, 2005.

73



	Contents
	Declaration
	Abstract
	Acknowledgements
	Introduction
	1 Complete n-fold Segal spaces
	1.1 A quick tour of simplicial spaces
	1.2 Complete Segal spaces
	1.3 Complete n-fold Segal spaces

	2 Higher bordism Categories
	2.1 The complete n-fold Segal space of closed intervals
	2.2 The infinity,d-category of n-bordisms

	Bibliography

